Repository logo
  • English
  • 中文
Log In
Have you forgotten your password?
  1. Home
  2. College of Engineering / 工學院
  3. Environmental Engineering / 環境工程學研究所
  4. Assessment of Power Generation from Biogas on Greenhouse Gas Emissions and Environment Impact
 
  • Details

Assessment of Power Generation from Biogas on Greenhouse Gas Emissions and Environment Impact

Date Issued
2016
Date
2016
Author(s)
Hsu, Wei-Li
DOI
10.6342/NTU201602304
URI
http://ntur.lib.ntu.edu.tw//handle/246246/277034
Abstract
Biogas is one of gaseous fuel biomass energies in renewable resourcse. It can be used for heating and power generation. Improvement of the use of surplus biogas can effectively decrease the impact of greenhouse gas emissions of CH4 and CO2 in biogas on global warming, and reduce wasting energy resource. In this study, the life cycle assessment was performed to investigate the feasibility of adopting Bali sewage treatment plant, which is the largest of anaerobic sludge treatment plant in Taiwan, for the anaerobic treatment of sludge and foodwaste to produce biogas and generate the electricity. The study consists of two parts. The first part employed gas turbine and reciprocal engine to generate electricity from biogas. The composition of exhausts and performance characteristics of power generators were exmined to provide information of parameters needs for the second part. The second part conducted life cycle assessment to investigate the process of anaerobic digestion of sludge to produce biogas and generate electricity at Bali sewage treatment plant. The scenario of process of anaerobic digestion of foodwaste was also assessed. Finally, according to the emissions of exhausts of the generator, comparation of CO2 emissions of power generation from biogas with fossil fuel was made. The results from part I show, as the output power exceeds 20 kW, emission concentration of NOx using conventional reciprocal engine is about 20 times than that using gas turbine. The higher the output power, the greater the difference in NOx concentration. For 1 kWh output electricity, the emitted amount from reciprocal engine were 4.8×10-2 kg CO and 1.92 ×10-2 kg NOx with combustion efficiency (CE) of 0.97. Those from gas turbine were 4.1×10-3 kg CO and 1.63×10-3 kg NOx with CE of 0.99. The amount of exhausts of CO and NOx from gas turbine are about one-tenth of those from reciprocal engine. The results from part II indicate that the anaerobic digestion unit process exhibits the highest environmental impact in the whole processes from the input of raw matterials to the output of power generated from biogas. The impact extents of anaerobic digestion of sludge and power generation via gas turbine using biogas are 10-3 pt and 9.81×10-5 pt, respectively. The benefits of anaerobic digestion of foodwaste as a raw material are better than those of sludge. Because of the high content of organic matter of raw material of foodwaste and its large biogas output, the environmental impact using foodwaste is in half comparing with sludge. The impact extents for power generation via gas turbine using biogas with raw inputs of foodwaste and sludge are 5.6×10-4 pt and 1.11×10-3 pt, respectively. Without counting the CO2 emission from the production of biogas by anaerobic digestion, for generating 1 kWh, the gas turbine using biogas emitted CO2 of 266 g with 734 g, 203 g and 574 g less than those of power generators using coal, nature gas and oil, respectively. The use of available biogas for gas turbine in replacing the composed energy sources and sole fossil fuels for electricity generation of Taiwan can reduce at least 51.25% and 67% of CO2 emission, respectively. Therefore, the application of power generation from biogas can effectively not only solve the problem of the surplus biogas, but also offer an alternative energy to fossil fuels, effectively reducing the impact of greenhouse gas emissions.
Subjects
gas turbine
reciprcal engine
power generation from biogas
anaerobic digestion
life cycle assessment
greenhouse gas emissions
SDGs

[SDGs]SDG7

[SDGs]SDG11

[SDGs]SDG12

Type
thesis
File(s)
Loading...
Thumbnail Image
Name

ntu-105-R03541129-1.pdf

Size

23.54 KB

Format

Adobe PDF

Checksum

(MD5):8737da9704e491a2c4aaa2736d8963e9

臺大位居世界頂尖大學之列,為永久珍藏及向國際展現本校豐碩的研究成果及學術能量,圖書館整合機構典藏(NTUR)與學術庫(AH)不同功能平台,成為臺大學術典藏NTU scholars。期能整合研究能量、促進交流合作、保存學術產出、推廣研究成果。

To permanently archive and promote researcher profiles and scholarly works, Library integrates the services of “NTU Repository” with “Academic Hub” to form NTU Scholars.

總館學科館員 (Main Library)
醫學圖書館學科館員 (Medical Library)
社會科學院辜振甫紀念圖書館學科館員 (Social Sciences Library)

開放取用是從使用者角度提升資訊取用性的社會運動,應用在學術研究上是透過將研究著作公開供使用者自由取閱,以促進學術傳播及因應期刊訂購費用逐年攀升。同時可加速研究發展、提升研究影響力,NTU Scholars即為本校的開放取用典藏(OA Archive)平台。(點選深入了解OA)

  • 請確認所上傳的全文是原創的內容,若該文件包含部分內容的版權非匯入者所有,或由第三方贊助與合作完成,請確認該版權所有者及第三方同意提供此授權。
    Please represent that the submission is your original work, and that you have the right to grant the rights to upload.
  • 若欲上傳已出版的全文電子檔,可使用Open policy finder網站查詢,以確認出版單位之版權政策。
    Please use Open policy finder to find a summary of permissions that are normally given as part of each publisher's copyright transfer agreement.
  • 網站簡介 (Quickstart Guide)
  • 使用手冊 (Instruction Manual)
  • 線上預約服務 (Booking Service)
  • 方案一:臺灣大學計算機中心帳號登入
    (With C&INC Email Account)
  • 方案二:ORCID帳號登入 (With ORCID)
  • 方案一:定期更新ORCID者,以ID匯入 (Search for identifier (ORCID))
  • 方案二:自行建檔 (Default mode Submission)
  • 方案三:學科館員協助匯入 (Email worklist to subject librarians)

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science