Repository logo
  • English
  • 中文
Log In
Have you forgotten your password?
  1. Home
  2. College of Electrical Engineering and Computer Science / 電機資訊學院
  3. Electrical Engineering / 電機工程學系
  4. Training with Small Medical Data: Robust Bayesian Neural Networks for Colon Cancer Overall Survival Prediction
 
  • Details

Training with Small Medical Data: Robust Bayesian Neural Networks for Colon Cancer Overall Survival Prediction

Journal
Proceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBS
Pages
2030-2033
Date Issued
2021
Author(s)
Hsu T.-C
CHE LIN  
DOI
10.1109/EMBC46164.2021.9630698
URI
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85122534073&doi=10.1109%2fEMBC46164.2021.9630698&partnerID=40&md5=293c3463e4efcbd9085b25aa48c4a910
https://scholars.lib.ntu.edu.tw/handle/123456789/632214
Abstract
Fast and accurate cancer prognosis stratification models are essential for treatment designs. Large labeled patient data can power advanced deep learning models to obtain precise predictions. However, since fully labeled patient data are hard to acquire in practical scenarios, deep models are prone to make non-robust predictions biased toward data partition and model hyper-parameter selection. Given a small training set, we applied the systems biology feature selector in our previous study to avoid over-fitting and select 18 prognostic biomarkers. Combined with three other clinical features, we trained Bayesian binary classifiers to predict the 5-year overall survival (OS) of colon cancer patients in this study. Results showed that Bayesian models could provide better and more robust predictions compared to their non-Bayesian counterparts. Specifically, in terms of the area under the receiver operating characteristic curve (AUC), macro F1-score (maF 1 ), and concordance index (CI), we found that the Bayesian bimodal neural network (late fusion) classifier (B-Bimodal) achieved the best results (AUC: 0.8083 ± 0.0736; maF 1 : 0.7300 ± 0.0659; CI: 0.7238 ± 0.0440). The single modal Bayesian neural network classifier (B-Concat) fed with concatenated patient data (early fusion) achieved slightly worse but more robust performance in terms of AUC and CI (AUC: 0.7105 ± 0.0692; maF 1 : 0.7156 ± 0.0690; CI: 0.6627 ± 0.0558). Such robustness is essential to training learning models with small medical data. © 2021 IEEE.
SDGs

[SDGs]SDG3

Other Subjects
Bayesian networks; Deep learning; Diagnosis; Forecasting; Hospital data processing; Neural networks; Bayesian; Bayesian neural networks; Colon cancer; Concordance index; F1 scores; Learning models; Medical data; Overall survival; Robust predictions; Survival prediction; Diseases; Bayes theorem; colon tumor; human; receiver operating characteristic; systems biology; Bayes Theorem; Colonic Neoplasms; Humans; Neural Networks, Computer; ROC Curve; Systems Biology
Type
conference paper

臺大位居世界頂尖大學之列,為永久珍藏及向國際展現本校豐碩的研究成果及學術能量,圖書館整合機構典藏(NTUR)與學術庫(AH)不同功能平台,成為臺大學術典藏NTU scholars。期能整合研究能量、促進交流合作、保存學術產出、推廣研究成果。

To permanently archive and promote researcher profiles and scholarly works, Library integrates the services of “NTU Repository” with “Academic Hub” to form NTU Scholars.

總館學科館員 (Main Library)
醫學圖書館學科館員 (Medical Library)
社會科學院辜振甫紀念圖書館學科館員 (Social Sciences Library)

開放取用是從使用者角度提升資訊取用性的社會運動,應用在學術研究上是透過將研究著作公開供使用者自由取閱,以促進學術傳播及因應期刊訂購費用逐年攀升。同時可加速研究發展、提升研究影響力,NTU Scholars即為本校的開放取用典藏(OA Archive)平台。(點選深入了解OA)

  • 請確認所上傳的全文是原創的內容,若該文件包含部分內容的版權非匯入者所有,或由第三方贊助與合作完成,請確認該版權所有者及第三方同意提供此授權。
    Please represent that the submission is your original work, and that you have the right to grant the rights to upload.
  • 若欲上傳已出版的全文電子檔,可使用Open policy finder網站查詢,以確認出版單位之版權政策。
    Please use Open policy finder to find a summary of permissions that are normally given as part of each publisher's copyright transfer agreement.
  • 網站簡介 (Quickstart Guide)
  • 使用手冊 (Instruction Manual)
  • 線上預約服務 (Booking Service)
  • 方案一:臺灣大學計算機中心帳號登入
    (With C&INC Email Account)
  • 方案二:ORCID帳號登入 (With ORCID)
  • 方案一:定期更新ORCID者,以ID匯入 (Search for identifier (ORCID))
  • 方案二:自行建檔 (Default mode Submission)
  • 方案三:學科館員協助匯入 (Email worklist to subject librarians)

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science