Repository logo
  • English
  • 中文
Log In
Have you forgotten your password?
  1. Home
  2. College of Bioresources and Agriculture / 生物資源暨農學院
  3. Bioenvironmental Systems Engineering / 生物環境系統工程學系
  4. Seamless integration of convolutional and back-propagation neural networks for regional multi-step-ahead PM<inf>2.5</inf> forecasting
 
  • Details

Seamless integration of convolutional and back-propagation neural networks for regional multi-step-ahead PM2.5 forecasting

Journal
Journal of Cleaner Production
Journal Volume
261
Date Issued
2020
Author(s)
Kow, P.-Y.
Wang, Y.-S.
Zhou, Y.
Kao, I.-F.
Issermann, M.
Chang, L.-C.
FI-JOHN CHANG  
DOI
10.1016/j.jclepro.2020.121285
URI
https://www.scopus.com/inward/record.url?eid=2-s2.0-85082686885&partnerID=40&md5=a4692e6fe274225e761e6178e5e65580
https://scholars.lib.ntu.edu.tw/handle/123456789/548286
Abstract
The fine particulate matter (e.g. PM2.5) gains an increasing concern of human health deterioration. Modelling PM2.5 concentrations remains a substantial challenge due to the limited understanding of the dynamic processes as well as uncertainties residing in the emission data and their projections. This study proposed a hybrid model (CNN-BP) engaging a Convolutional Neural Network (CNN) and a Back Propagation Neural Network (BPNN) to make accurate PM2.5 forecasts for multiple stations at multiple horizons at the same time. The hourly datasets of six air quality and two meteorological factors collected from 73 air quality monitoring stations in Taiwan during 2017 formed the case study. A total of 639,480 hourly datasets were collected and allocated into training (409,238, 64%), validation (102,346, 16%), and testing (127,896, 20%) stages. The forecasts of PM2.5 concentrations were first characterized as a function of air quality and meteorological variables. Then the proposed CNN-BP approach effectively learned the dominant features of input data and simultaneously produced accurate regional multi-step-ahead PM2.5 forecasts (73 stations; t+1?t+10). The results demonstrate that the proposed CNN-BP model is remarkably superior to the BPNN, the random forest and the long short term memory neural network models owing to its higher forecast accuracy and excellence in creating reliable regional multi-step-ahead PM2.5 forecasts. Besides, the CNN-BP model not only has the power to cope with the curse of dimensionality by adequately handling heterogeneous inputs with relatively large time-lags but also has the capability to explore different PM2.5 mechanisms (local emission and transboundary transmission) for the five regions (R1-R5) and the whole Taiwan. This study shows that multi-site (regional) and multi-horizon forecasting can be achieved by exactly one model (i.e. the proposed CNN-BP model), hitting a new milestone. Therefore, the CNN-BP model can facilitate real-time PM2.5 forecast service and the forecasts can be made publicly available online. ? 2020 Elsevier Ltd
Subjects
Back propagation neural network; Convolutional neural network; Deep learning; Multi-step-ahead forecasts; PM2.5 forecast; Taiwan
SDGs

[SDGs]SDG3

Other Subjects
Air quality; Convolution; Convolutional neural networks; Decision trees; Deep learning; Deep neural networks; Deterioration; Forecasting; Torsional stress; Uncertainty analysis; Air quality monitoring stations; Back propagation neural networks; Curse of dimensionality; Fine particulate matter; Meteorological factors; Meteorological variables; Multi-step; Taiwan; Backpropagation
Type
journal article

臺大位居世界頂尖大學之列,為永久珍藏及向國際展現本校豐碩的研究成果及學術能量,圖書館整合機構典藏(NTUR)與學術庫(AH)不同功能平台,成為臺大學術典藏NTU scholars。期能整合研究能量、促進交流合作、保存學術產出、推廣研究成果。

To permanently archive and promote researcher profiles and scholarly works, Library integrates the services of “NTU Repository” with “Academic Hub” to form NTU Scholars.

總館學科館員 (Main Library)
醫學圖書館學科館員 (Medical Library)
社會科學院辜振甫紀念圖書館學科館員 (Social Sciences Library)

開放取用是從使用者角度提升資訊取用性的社會運動,應用在學術研究上是透過將研究著作公開供使用者自由取閱,以促進學術傳播及因應期刊訂購費用逐年攀升。同時可加速研究發展、提升研究影響力,NTU Scholars即為本校的開放取用典藏(OA Archive)平台。(點選深入了解OA)

  • 請確認所上傳的全文是原創的內容,若該文件包含部分內容的版權非匯入者所有,或由第三方贊助與合作完成,請確認該版權所有者及第三方同意提供此授權。
    Please represent that the submission is your original work, and that you have the right to grant the rights to upload.
  • 若欲上傳已出版的全文電子檔,可使用Open policy finder網站查詢,以確認出版單位之版權政策。
    Please use Open policy finder to find a summary of permissions that are normally given as part of each publisher's copyright transfer agreement.
  • 網站簡介 (Quickstart Guide)
  • 使用手冊 (Instruction Manual)
  • 線上預約服務 (Booking Service)
  • 方案一:臺灣大學計算機中心帳號登入
    (With C&INC Email Account)
  • 方案二:ORCID帳號登入 (With ORCID)
  • 方案一:定期更新ORCID者,以ID匯入 (Search for identifier (ORCID))
  • 方案二:自行建檔 (Default mode Submission)
  • 方案三:學科館員協助匯入 (Email worklist to subject librarians)

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science