Repository logo
  • English
  • 中文
Log In
Have you forgotten your password?
  1. Home
  2. College of Electrical Engineering and Computer Science / 電機資訊學院
  3. Computer Science and Information Engineering / 資訊工程學系
  4. Efficient reasoning about data trees via integer linear programming
 
  • Details

Efficient reasoning about data trees via integer linear programming

Journal
ACM International Conference Proceeding Series
Pages
18-29
Date Issued
2011
Author(s)
David, Claire
Libkin, Leonid
TONY TAN 
DOI
10.1145/1938551.1938558
URI
https://scholars.lib.ntu.edu.tw/handle/123456789/490128
https://www.scopus.com/inward/record.uri?eid=2-s2.0-79952334999&doi=10.1145%2f1938551.1938558&partnerID=40&md5=2a93ef3993e7f5dc8f7e4ef964caf152
Abstract
Data trees provide a standard abstraction of XML documents with data values: they are trees whose nodes, in addition to the usual labels, can carry labels from an infinite alphabet (data). Therefore, one is interested in decidable formalisms for reasoning about data trees. While some are known - such as the two-variable logic - they tend to be of very high complexity, and most decidability proofs are highly nontrivial. We are therefore interested in reasonable complexity formalisms as well as better techniques for proving decidability. Here we show that many decidable formalisms for data trees are subsumed - fully or partially - by the power of tree automata together with set constraints and linear constraints on cardinalities of various sets of data values. All these constraints can be translated into instances of integer linear programming, giving us an NP bound on the complexity of the reasoning tasks. We prove that this bound, as well as the key encoding technique, remain very robust, and allow the addition of features such as counting of paths and patterns, and even a concise encoding of constraints, without increasing the complexity. We also relate our results to several reasoning tasks over XML documents, such as satisfiability of schemas and data dependencies and satisfiability of the two-variable logic. © 2011 ACM.
Subjects
Data values; Integer linear programming; Presburger arithmetic; Reasoning; Tree languages; XML
Other Subjects
Data values; Integer Linear Programming; Presburger arithmetic; Reasoning; Tree languages; Automata theory; Computability and decidability; Database systems; Encoding (symbols); Integer programming; Linear programming; XML; Trees (mathematics)
Type
conference paper

臺大位居世界頂尖大學之列,為永久珍藏及向國際展現本校豐碩的研究成果及學術能量,圖書館整合機構典藏(NTUR)與學術庫(AH)不同功能平台,成為臺大學術典藏NTU scholars。期能整合研究能量、促進交流合作、保存學術產出、推廣研究成果。

To permanently archive and promote researcher profiles and scholarly works, Library integrates the services of “NTU Repository” with “Academic Hub” to form NTU Scholars.

總館學科館員 (Main Library)
醫學圖書館學科館員 (Medical Library)
社會科學院辜振甫紀念圖書館學科館員 (Social Sciences Library)

開放取用是從使用者角度提升資訊取用性的社會運動,應用在學術研究上是透過將研究著作公開供使用者自由取閱,以促進學術傳播及因應期刊訂購費用逐年攀升。同時可加速研究發展、提升研究影響力,NTU Scholars即為本校的開放取用典藏(OA Archive)平台。(點選深入了解OA)

  • 請確認所上傳的全文是原創的內容,若該文件包含部分內容的版權非匯入者所有,或由第三方贊助與合作完成,請確認該版權所有者及第三方同意提供此授權。
    Please represent that the submission is your original work, and that you have the right to grant the rights to upload.
  • 若欲上傳已出版的全文電子檔,可使用Open policy finder網站查詢,以確認出版單位之版權政策。
    Please use Open policy finder to find a summary of permissions that are normally given as part of each publisher's copyright transfer agreement.
  • 網站簡介 (Quickstart Guide)
  • 使用手冊 (Instruction Manual)
  • 線上預約服務 (Booking Service)
  • 方案一:臺灣大學計算機中心帳號登入
    (With C&INC Email Account)
  • 方案二:ORCID帳號登入 (With ORCID)
  • 方案一:定期更新ORCID者,以ID匯入 (Search for identifier (ORCID))
  • 方案二:自行建檔 (Default mode Submission)
  • 方案三:學科館員協助匯入 (Email worklist to subject librarians)

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science