Repository logo
  • English
  • 中文
Log In
Have you forgotten your password?
  1. Home
  2. College of Management / 管理學院
  3. Information Management / 資訊管理學系
  4. Nonparametric Regression via Variance-Adjusted Gradient Boosting Gaussian Process Regression
 
  • Details

Nonparametric Regression via Variance-Adjusted Gradient Boosting Gaussian Process Regression

Journal
IEEE Transactions on Knowledge and Data Engineering
Journal Volume
33
Journal Issue
6
Pages
2669-2679
Date Issued
2021
Author(s)
HSIN-MIN LU  
Chen J.-S
Liao W.-C.
DOI
10.1109/TKDE.2019.2953728
URI
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85098927817&doi=10.1109%2fTKDE.2019.2953728&partnerID=40&md5=37bf161cc567dc630069097c73d518c3
https://scholars.lib.ntu.edu.tw/handle/123456789/608044
Abstract
Regression models have broad applications in data analytics. Gaussian process regression is a nonparametric regression model that learns nonlinear maps from input features to real-valued output using a kernel function that constructs the covariance matrix among all pairs of data. Gaussian process regression often performs well in various applications. However, the time complexity of Gaussian process regression is O(n3) O(n3) for a training dataset of size $n$ n. The cubic time complexity hinders Gaussian process regression from scaling up to large datasets. Guided by the properties of Gaussian distributions, we developed a variance-adjusted gradient boosting algorithm for approximating a Gaussian process regression (VAGR). VAGR sequentially approximates the full Gaussian process regression model using the residuals computed from variance-adjusted predictions based on randomly sampled training subsets. VAGR has a time complexity of O(nm3) O(nm3) for a training dataset of size n n and the chosen batch size $m$ m. The reduced time complexity allows us to apply VAGR to much larger datasets compared with the full Gaussian process regression. Our experiments suggest that VAGR has a prediction performance comparable to or better than models that include random forest, gradient boosting machines, support vector regressions, and stochastic variational inference for Gaussian process regression. ? 1989-2012 IEEE.
Subjects
big data
Gaussian process
Gradient boosting
variance-adjusted prediction
Covariance matrix
Data Analytics
Decision trees
Gaussian noise (electronic)
Large dataset
Stochastic models
Stochastic systems
Support vector machines
Support vector regression
Broad application
Gaussian process regression
Gaussian process regression model
Non-parametric regression
Prediction performance
Training subsets
Variational inference
Gaussian distribution
Type
journal article

臺大位居世界頂尖大學之列,為永久珍藏及向國際展現本校豐碩的研究成果及學術能量,圖書館整合機構典藏(NTUR)與學術庫(AH)不同功能平台,成為臺大學術典藏NTU scholars。期能整合研究能量、促進交流合作、保存學術產出、推廣研究成果。

To permanently archive and promote researcher profiles and scholarly works, Library integrates the services of “NTU Repository” with “Academic Hub” to form NTU Scholars.

總館學科館員 (Main Library)
醫學圖書館學科館員 (Medical Library)
社會科學院辜振甫紀念圖書館學科館員 (Social Sciences Library)

開放取用是從使用者角度提升資訊取用性的社會運動,應用在學術研究上是透過將研究著作公開供使用者自由取閱,以促進學術傳播及因應期刊訂購費用逐年攀升。同時可加速研究發展、提升研究影響力,NTU Scholars即為本校的開放取用典藏(OA Archive)平台。(點選深入了解OA)

  • 請確認所上傳的全文是原創的內容,若該文件包含部分內容的版權非匯入者所有,或由第三方贊助與合作完成,請確認該版權所有者及第三方同意提供此授權。
    Please represent that the submission is your original work, and that you have the right to grant the rights to upload.
  • 若欲上傳已出版的全文電子檔,可使用Open policy finder網站查詢,以確認出版單位之版權政策。
    Please use Open policy finder to find a summary of permissions that are normally given as part of each publisher's copyright transfer agreement.
  • 網站簡介 (Quickstart Guide)
  • 使用手冊 (Instruction Manual)
  • 線上預約服務 (Booking Service)
  • 方案一:臺灣大學計算機中心帳號登入
    (With C&INC Email Account)
  • 方案二:ORCID帳號登入 (With ORCID)
  • 方案一:定期更新ORCID者,以ID匯入 (Search for identifier (ORCID))
  • 方案二:自行建檔 (Default mode Submission)
  • 方案三:學科館員協助匯入 (Email worklist to subject librarians)

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science