Repository logo
  • English
  • 中文
Log In
Have you forgotten your password?
  1. Home
  2. College of Engineering / 工學院
  3. Mechanical Engineering / 機械工程學系
  4. An affordable and tunable continuous wrinkle micropattern for cell physical guidance study
 
  • Details

An affordable and tunable continuous wrinkle micropattern for cell physical guidance study

Journal
Journal of the Taiwan Institute of Chemical Engineers
Journal Volume
126
Date Issued
2021-09-01
Author(s)
Chang, Yen Yu
Jiang, Bing Cheng
Chen, Po Ying
YA-YU CHIANG  
DOI
10.1016/j.jtice.2021.07.001
URI
https://scholars.lib.ntu.edu.tw/handle/123456789/635656
URL
https://api.elsevier.com/content/abstract/scopus_id/85111003016
Abstract
Geometrical cues in the extracellular environment are essential for cells guiding. Conventional fabrications for well-defined microstructures are usually associated with expensive and time-consuming micro-electro-mechanical systems (MEMS), including lithography and etching. Additionally, the microstructures produced on silicon wafers are not amendable after molding, hindering the applicability. Here, we developed a low-cost and efficient fabrication process to generate highly ordered microstructures for cell culture by designing and fabricating a tunable wrinkled on biocompatible polydimethylsiloxane (PDMS) surfaces based on different mechanical properties of the biomaterials. The mechanical properties, including Young's modulus, tensile strength, and thickness ratio between the stiff and soft bilayers, can be determined by the thickness of PDMS film, curing temperature, UV exposure time, applied strain rates during the fabrication, leading to various amplitudes and wavelengths of the wrinkled topography on polymeric materials. Those wrinkled surfaces with micro-pattern are further applied to hCMEC/D cell culture, an immortalized human cerebral microvascular endothelial cell line, to induce cell proliferation and provide guidance for cell arrangement and migration. Therefore, this report sheds light on cell biology and biomedical tissue engineering by delivering an affordable and tunable fabrication process for wrinkles formations on the polymeric thin film.
Subjects
Endothelial cell | Micropattern | Microstructured extracellular environment | PDMS wrinkle | Physical guidance
Type
journal article

臺大位居世界頂尖大學之列,為永久珍藏及向國際展現本校豐碩的研究成果及學術能量,圖書館整合機構典藏(NTUR)與學術庫(AH)不同功能平台,成為臺大學術典藏NTU scholars。期能整合研究能量、促進交流合作、保存學術產出、推廣研究成果。

To permanently archive and promote researcher profiles and scholarly works, Library integrates the services of “NTU Repository” with “Academic Hub” to form NTU Scholars.

總館學科館員 (Main Library)
醫學圖書館學科館員 (Medical Library)
社會科學院辜振甫紀念圖書館學科館員 (Social Sciences Library)

開放取用是從使用者角度提升資訊取用性的社會運動,應用在學術研究上是透過將研究著作公開供使用者自由取閱,以促進學術傳播及因應期刊訂購費用逐年攀升。同時可加速研究發展、提升研究影響力,NTU Scholars即為本校的開放取用典藏(OA Archive)平台。(點選深入了解OA)

  • 請確認所上傳的全文是原創的內容,若該文件包含部分內容的版權非匯入者所有,或由第三方贊助與合作完成,請確認該版權所有者及第三方同意提供此授權。
    Please represent that the submission is your original work, and that you have the right to grant the rights to upload.
  • 若欲上傳已出版的全文電子檔,可使用Open policy finder網站查詢,以確認出版單位之版權政策。
    Please use Open policy finder to find a summary of permissions that are normally given as part of each publisher's copyright transfer agreement.
  • 網站簡介 (Quickstart Guide)
  • 使用手冊 (Instruction Manual)
  • 線上預約服務 (Booking Service)
  • 方案一:臺灣大學計算機中心帳號登入
    (With C&INC Email Account)
  • 方案二:ORCID帳號登入 (With ORCID)
  • 方案一:定期更新ORCID者,以ID匯入 (Search for identifier (ORCID))
  • 方案二:自行建檔 (Default mode Submission)
  • 方案三:學科館員協助匯入 (Email worklist to subject librarians)

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science