Repository logo
  • English
  • 中文
Log In
Have you forgotten your password?
  1. Home
  2. College of Medicine / 醫學院
  3. School of Dentistry / 牙醫專業學院
  4. Dentistry / 牙醫學系
  5. PLS-ANN based classification model for oral submucous fibrosis and oral carcinogenesis
 
  • Details

PLS-ANN based classification model for oral submucous fibrosis and oral carcinogenesis

Journal
Lasers in Surgery and Medicine
Journal Volume
32
Journal Issue
4
Pages
318-326
Date Issued
2003
Author(s)
Wang C.-Y.
Tsai T.
HSIN-MING CHEN  
Chen C.-T.
CHUN-PIN CHIANG  
DOI
10.1002/lsm.10153
URI
https://www.scopus.com/inward/record.uri?eid=2-s2.0-0037963251&doi=10.1002%2flsm.10153&partnerID=40&md5=7d3d24f7c604b4604bffefd0f7f5b6ec
https://scholars.lib.ntu.edu.tw/handle/123456789/585087
Abstract
Background and Objectives: For effective management of oral neoplasia, autofluorescence spectroscopy was conducted on patients with different characteristics of oral lesions in vivo. This study tested the possibility of using a multivariate statistical algorithm to differentiate human oral premalignant and malignant lesions from benign lesions or normal oral mucosa. Study Design/Materials and Methods: A fiber optics-based fluorospectrometer was used to measure the autofluorescence spectra from healthy volunteers (NOM) and patients with oral lesions of submucous fibrosis (OSF), epithelial hyperkeratosis (EH), epithelial dysplasia (ED), and squamous cell carcinoma (SCC). A partial least-squares and artificial neural network (PLS-ANN) classification algorithm was used to characterize these oral lesions to discriminate premalignant (ED) and malignant (SCC) tissues from "benign" (NOM, OSF, and EH) tissues. Results: The normalized and centerized spectra of the different kinds of samples showed similar but divergent patterns. Our PLS-ANN classification algorithm could differentiate "premalignant and malignant" tissues from "benign" tissues with a sensitivity of 81%, a specificity of 96%, and a positive predictive value of 88%. Conclusions: We conclude that the PLS-ANN classification algorithm based on autofluorescence spectroscopy at 330-nm excitation is useful for in vivo diagnosis of OSF as well as oral premalignant and malignant lesions. ? 2003 Wiley-Liss, Inc.
Subjects
Artificial neural networks; Autofluorescence spectroscopy; Oral cancer diagnosis; Partial-least squares
SDGs

[SDGs]SDG3

Other Subjects
algorithm; article; artificial neural network; autofluorescence; cancer diagnosis; carcinogenesis; controlled study; diagnostic value; epithelium hyperplasia; fiber optics; fibrosis; fluorometry; human; human tissue; hyperkeratosis; major clinical study; mouth carcinoma; mouth mucosa; precancer; priority journal; regression analysis; spectroscopy; squamous cell carcinoma; submucosa; validation process; Algorithms; Carcinoma, Squamous Cell; Humans; Least-Squares Analysis; Mouth Mucosa; Mouth Neoplasms; Neural Networks (Computer); Precancerous Conditions; Spectrometry, Fluorescence
Type
journal article

臺大位居世界頂尖大學之列,為永久珍藏及向國際展現本校豐碩的研究成果及學術能量,圖書館整合機構典藏(NTUR)與學術庫(AH)不同功能平台,成為臺大學術典藏NTU scholars。期能整合研究能量、促進交流合作、保存學術產出、推廣研究成果。

To permanently archive and promote researcher profiles and scholarly works, Library integrates the services of “NTU Repository” with “Academic Hub” to form NTU Scholars.

總館學科館員 (Main Library)
醫學圖書館學科館員 (Medical Library)
社會科學院辜振甫紀念圖書館學科館員 (Social Sciences Library)

開放取用是從使用者角度提升資訊取用性的社會運動,應用在學術研究上是透過將研究著作公開供使用者自由取閱,以促進學術傳播及因應期刊訂購費用逐年攀升。同時可加速研究發展、提升研究影響力,NTU Scholars即為本校的開放取用典藏(OA Archive)平台。(點選深入了解OA)

  • 請確認所上傳的全文是原創的內容,若該文件包含部分內容的版權非匯入者所有,或由第三方贊助與合作完成,請確認該版權所有者及第三方同意提供此授權。
    Please represent that the submission is your original work, and that you have the right to grant the rights to upload.
  • 若欲上傳已出版的全文電子檔,可使用Open policy finder網站查詢,以確認出版單位之版權政策。
    Please use Open policy finder to find a summary of permissions that are normally given as part of each publisher's copyright transfer agreement.
  • 網站簡介 (Quickstart Guide)
  • 使用手冊 (Instruction Manual)
  • 線上預約服務 (Booking Service)
  • 方案一:臺灣大學計算機中心帳號登入
    (With C&INC Email Account)
  • 方案二:ORCID帳號登入 (With ORCID)
  • 方案一:定期更新ORCID者,以ID匯入 (Search for identifier (ORCID))
  • 方案二:自行建檔 (Default mode Submission)
  • 方案三:學科館員協助匯入 (Email worklist to subject librarians)

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science