Repository logo
  • English
  • 中文
Log In
Have you forgotten your password?
  1. Home
  2. College of Engineering / 工學院
  3. Materials Science and Engineering / 材料科學與工程學系
  4. Bismuth Based Materials for Green Energy
 
  • Details

Bismuth Based Materials for Green Energy

Date Issued
2014
Date
2014
Author(s)
Tu, Yu-Chieh
URI
http://ntur.lib.ntu.edu.tw//handle/246246/262054
Abstract
The bismuth-based metal oxides, such as BiFeO3 (BFO) and Bi/B-doped TiO2 are potential candidates for electrolyte of low temperature solid oxide fuel cell and solution processable hybrid solar cell, respectively. In this study, we synthesize bismuth-based metal oxides, and investigate the material characteristics and the cell characteristics. For low temperature solid oxide fuel cells, we prepared BFO as electrolyte. The material was synthesized using solution approach. Bismuth nitrate pentahydrate (Bi(NO3)3.5H2O) and iron nitrate nonahydrate (Fe(NO3)3.9H2O) were dissolved in the mixture of 2-ethoxyethanol and acetic acid at 70°C for 30 min. After evaporating the solvent, the BFO was calcined at 500°C for 2 hrs in air. The air calcined BFO was pressed into a disk which showed a pure BFO perovskite structure after sintered at either 850°C or 900°C. The BFO was coated with 100 micron yttria-stabilized zirconia (YSZ) buffer layer to avoid hydrogen reduction of BFO. This bilayer electrolyte exhibits 1.6 times increasing in maximum power density as compared with pure YSZ due to its perovskite structure, when Ni-YSZ anode and lanthanum strontium cobalt ferrite cathode were used in the fuel cell at 650°C. TiO2 nanorods were synthesized to fabricate hybrid P3HT:TiO2 solar cells. The TiO2 nanorods were synthesized using sol-gel process in the presence of oleic acid surfactant at 98℃ for 9 hrs. The size of TiO2 nanocrystal is about 35 nm in length and 5 nm in diameter. The insulating oleic acid on TiO2 nanorods was replaced by pyridine (as-synthesized TiO2) for good charge transport between P3HT and TiO2 in the application of hybrid P3HT:TiO2 nanorods solar cells. In order to improve the power conversion efficiency (PCE) of P3HT:TiO2 solar cell, we have further increased the crystallinity of anatase TiO2 nanorods. Two novel approaches: (1) ripening and (2) bismuth/boron doping for TiO2 nanorods were explored. The crystallinity of the as-synthesized TiO2 nanorods was increased through ripening (120℃, 24 hrs) by using an autoclave reactor while the size of nanocrystal was not significantly changed. The bismuth doped TiO2 (Bi-doped TiO2) and boron doped TiO2 nanorods (B-doped TiO2) were synthesized using the same sol-gel process of as synthesized TiO2 nanorods. The PCE of P3HT:TiO2 solar cells was increased by 1.31 times and 1.79 times under A. M. 1.5 illumination for ripened and B-doped TiO2, respectively, as compared with as-synthesized TiO2. The B-doped TiO2 has the highest mobility and PCE, mainly due to the presence of partially reduced Ti4+ by boron atom with delocalized electrons. W4-dye is a promising way for modifying the interface between P3HT and TiO2 charge transport further. The Bi-doped TiO2 has higher Jsc as compared with B-doped TiO2, mainly due to the presence of improvement of electron density under TiO2. The PCE of solar cell made of W4-dye modified TiO2 nanorods has been increased by 1.33 times and 1.30 times for Bi-doped TiO2 and B-doped TiO2, respectively, as compared with that of as-synthesized TiO2.
Subjects
鐵酸鉍
固態燃料電池
二氧化鈦
聚三己基噻吩
太陽能電池
Type
thesis
File(s)
Loading...
Thumbnail Image
Name

ntu-103-D96527009-1.pdf

Size

23.54 KB

Format

Adobe PDF

Checksum

(MD5):3b597a75e559f0e35afa70d9f0727c2f

臺大位居世界頂尖大學之列,為永久珍藏及向國際展現本校豐碩的研究成果及學術能量,圖書館整合機構典藏(NTUR)與學術庫(AH)不同功能平台,成為臺大學術典藏NTU scholars。期能整合研究能量、促進交流合作、保存學術產出、推廣研究成果。

To permanently archive and promote researcher profiles and scholarly works, Library integrates the services of “NTU Repository” with “Academic Hub” to form NTU Scholars.

總館學科館員 (Main Library)
醫學圖書館學科館員 (Medical Library)
社會科學院辜振甫紀念圖書館學科館員 (Social Sciences Library)

開放取用是從使用者角度提升資訊取用性的社會運動,應用在學術研究上是透過將研究著作公開供使用者自由取閱,以促進學術傳播及因應期刊訂購費用逐年攀升。同時可加速研究發展、提升研究影響力,NTU Scholars即為本校的開放取用典藏(OA Archive)平台。(點選深入了解OA)

  • 請確認所上傳的全文是原創的內容,若該文件包含部分內容的版權非匯入者所有,或由第三方贊助與合作完成,請確認該版權所有者及第三方同意提供此授權。
    Please represent that the submission is your original work, and that you have the right to grant the rights to upload.
  • 若欲上傳已出版的全文電子檔,可使用Open policy finder網站查詢,以確認出版單位之版權政策。
    Please use Open policy finder to find a summary of permissions that are normally given as part of each publisher's copyright transfer agreement.
  • 網站簡介 (Quickstart Guide)
  • 使用手冊 (Instruction Manual)
  • 線上預約服務 (Booking Service)
  • 方案一:臺灣大學計算機中心帳號登入
    (With C&INC Email Account)
  • 方案二:ORCID帳號登入 (With ORCID)
  • 方案一:定期更新ORCID者,以ID匯入 (Search for identifier (ORCID))
  • 方案二:自行建檔 (Default mode Submission)
  • 方案三:學科館員協助匯入 (Email worklist to subject librarians)

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science