Repository logo
  • English
  • 中文
Log In
Have you forgotten your password?
  1. Home
  2. College of Engineering / 工學院
  3. Polymer Science and Engineering / 高分子科學與工程學研究所
  4. Redox-Active High-Performance Polyimides as Versatile Electrode Materials for Organic Lithium- and Sodium-Ion Batteries
 
  • Details

Redox-Active High-Performance Polyimides as Versatile Electrode Materials for Organic Lithium- and Sodium-Ion Batteries

Journal
ACS Applied Materials and Interfaces
Date Issued
2023-01-01
Author(s)
Lubis, Andre Lammiduk
Baskoro, Febri
Lin, Ting Hsuan
Wong, Hui Qi
GUEY-SHENG LIOU  
Yen, Hung Ju
DOI
10.1021/acsami.3c10722
URI
https://scholars.lib.ntu.edu.tw/handle/123456789/639160
URL
https://api.elsevier.com/content/abstract/scopus_id/85181818454
Abstract
Organic electrode materials for rechargeable batteries show great promise for improving the storage capacity, reducing production costs, and minimizing environmental impact toward sustainability. In this study, we report a series of newly synthesized arylamine-based polyimides, TPPA-PIs, with three different bridge functionalizations on the imide rings and isomeric constituents that can work as versatile battery electrodes. As a lithium-ion battery cathode, a maximum energy density of 248 Wh kg-1 with high voltage operation up to 4.0 V can be achieved. As a lithium-ion battery anode, the TPPA-PIs showed a reversible storage capacity of 806 mA h g-1 at 100 mA g-1 current density with good rate capability up to a current density of 2000 mA g-1. Moreover, when applied as sodium-ion battery anodes, TPPA-PIs delivered an optimum specific capacity of up to 218 mA h g-1 after 50 cycles at a 50 mA g-1 current density and revealed a long cycling stability up to 1000 cycles under a high current density of 1000 mA g-1. More importantly, these electrochemical performances of TPPA-PIs are among the best compared with other reported polymer-based electrodes. The mechanistic studies show that both bridge functionalization on the imide units and isomerism impact the electrochemical performance by regulating their intrinsic properties such as charge storage behavior, ion diffusivity, and activation energy. We believe that such a detailed study of the structural design to electrochemical performance of these polymeric electrodes will offer insights into materials development and optimization for next-generation multifunctional energy storage devices in a wide range of applications.
Subjects
Arylamine | Lithium-ion battery | Organic electrode | Polyimide | Sodium-ion battery
SDGs

[SDGs]SDG7

Type
other

臺大位居世界頂尖大學之列,為永久珍藏及向國際展現本校豐碩的研究成果及學術能量,圖書館整合機構典藏(NTUR)與學術庫(AH)不同功能平台,成為臺大學術典藏NTU scholars。期能整合研究能量、促進交流合作、保存學術產出、推廣研究成果。

To permanently archive and promote researcher profiles and scholarly works, Library integrates the services of “NTU Repository” with “Academic Hub” to form NTU Scholars.

總館學科館員 (Main Library)
醫學圖書館學科館員 (Medical Library)
社會科學院辜振甫紀念圖書館學科館員 (Social Sciences Library)

開放取用是從使用者角度提升資訊取用性的社會運動,應用在學術研究上是透過將研究著作公開供使用者自由取閱,以促進學術傳播及因應期刊訂購費用逐年攀升。同時可加速研究發展、提升研究影響力,NTU Scholars即為本校的開放取用典藏(OA Archive)平台。(點選深入了解OA)

  • 請確認所上傳的全文是原創的內容,若該文件包含部分內容的版權非匯入者所有,或由第三方贊助與合作完成,請確認該版權所有者及第三方同意提供此授權。
    Please represent that the submission is your original work, and that you have the right to grant the rights to upload.
  • 若欲上傳已出版的全文電子檔,可使用Open policy finder網站查詢,以確認出版單位之版權政策。
    Please use Open policy finder to find a summary of permissions that are normally given as part of each publisher's copyright transfer agreement.
  • 網站簡介 (Quickstart Guide)
  • 使用手冊 (Instruction Manual)
  • 線上預約服務 (Booking Service)
  • 方案一:臺灣大學計算機中心帳號登入
    (With C&INC Email Account)
  • 方案二:ORCID帳號登入 (With ORCID)
  • 方案一:定期更新ORCID者,以ID匯入 (Search for identifier (ORCID))
  • 方案二:自行建檔 (Default mode Submission)
  • 方案三:學科館員協助匯入 (Email worklist to subject librarians)

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science