Repository logo
  • English
  • 中文
Log In
Have you forgotten your password?
  1. Home
  2. College of Engineering / 工學院
  3. Environmental Engineering / 環境工程學研究所
  4. A Study on the Production Processes and Costs of Bio-diesel
 
  • Details

A Study on the Production Processes and Costs of Bio-diesel

Date Issued
2007
Date
2007
Author(s)
Huang, Sheng-Syuan
DOI
zh-TW
URI
http://ntur.lib.ntu.edu.tw//handle/246246/62598
Abstract
Abstract Part Ι:Biodiesel production process Biodiesel is generally made by the pressing and the transesterification of oil-bearing crops such as soybeans, sunflower seeds, or rapeseeds. The main feature of biodiesel is that it is environmently friendly and reuses the land. By using fallow farmlands for growing oil-bearing crops, farmers can have the opportunity to work, which reduces government’s loading on subsidizing for fallowing. Furthermore, the absorption of carbon dioxide in the air by the plants as they grow also helps the nations abide by Kyoto Protocol in reducing the emissions of greenhouse gases to reach overall objectives. The addition of biodiesel also effectively lowers the exhaust emissions of COX, NOX, and TOC by diesel engines as compared to use petroleum diesel. This study utilized sunflower seeds and soybeans provided by the Agricultural Research Institute of I-Lan County as raw materials to produce biodiesel. The oil yields from the pressing of raw materials were 27.3% for sunflower seeds whereas only 1.6% for soybeans. The raw oil was then mixed with methyl alcohol and NaOH to undergo transesterification, followed by the distillation that gave rise to refined biodiesel. After comparing the physical properties of refined biodiesel, petroleum diesel, and the store-bought biodiesel, as well as performing simulated distillation analyses, it was found that the quality and performance of refined biodiesel were between the store-bought biodiesel and petroleum diesel. It had higher heating value and better burning quality after distillation. When the refined biodiesel was put into common 125 cc motorcycles (B30) for road tests, no noticeable differences were observed during driving. If the production yield and quality of refined biodiesel are furthen enhanced continuously, it will be a suitable fuel source for both diesel and gasoline cars, which will greatly promote the use of biodiesel. Part II: Economic assessments of production processes of biodiesel Baseing on the data from Taiwan Sugar Corporation’s edible soybean oil and experiment results of sunflower seeds by I-Lan Agricultural Research Institute, and adapting the simulated production procedures by Zhang et al. (2003 b), economic assessments of manufacturing of biodiesel at three different annual production levels (8,000, 30,000, and 100,000 metrics tons (MTs)) were performed. The results revealed that at these three annual production levels, the after-tax rates of return were -1.05, 0.95, and 0.91% , respectively for soybean oil, and were-1.42, -1.47, and 1.52%, respectively for sun sunflower seed oil (The raw material prices were based on the “2003 Central and South America average import duty-inclusive quotes” by the Directorate General of Customs of the Republic of China with crude soybean oil of 0.619USD kg-1, Crude sunflower seed oil: 0.689 USD kg-1(2003). As the profit derived from the Biodiesel byproduct – glycerol of is relatively high, the (net annual profit afer tax, NNP) of biodiesel production augments as the production level increases. When produced in large quantity, the higher biodiesel yield by sunflower seeds offset the higher cost of the crude sunflower seed oils that resulted in similar production costs with using soybean oil as the raw material. The breakeven pricess point(BBPs) for generating crude biodiesel from soybean oil at the above-mentioned three production levels were $766, $676, and $647 USD tonne -1 respectively, or equivalent to 22.41, 17.78, and 18.91 NTD liter-1 respectively. The BBPs of curde biodiesel for sunflower seed oil were 25.20, 22.56, and 21.70 NTD liter-1 , respectively. Therefore, the higher the production level, the lower the BBP, and the higher the market competitiveness.
Subjects
無
Type
thesis

臺大位居世界頂尖大學之列,為永久珍藏及向國際展現本校豐碩的研究成果及學術能量,圖書館整合機構典藏(NTUR)與學術庫(AH)不同功能平台,成為臺大學術典藏NTU scholars。期能整合研究能量、促進交流合作、保存學術產出、推廣研究成果。

To permanently archive and promote researcher profiles and scholarly works, Library integrates the services of “NTU Repository” with “Academic Hub” to form NTU Scholars.

總館學科館員 (Main Library)
醫學圖書館學科館員 (Medical Library)
社會科學院辜振甫紀念圖書館學科館員 (Social Sciences Library)

開放取用是從使用者角度提升資訊取用性的社會運動,應用在學術研究上是透過將研究著作公開供使用者自由取閱,以促進學術傳播及因應期刊訂購費用逐年攀升。同時可加速研究發展、提升研究影響力,NTU Scholars即為本校的開放取用典藏(OA Archive)平台。(點選深入了解OA)

  • 請確認所上傳的全文是原創的內容,若該文件包含部分內容的版權非匯入者所有,或由第三方贊助與合作完成,請確認該版權所有者及第三方同意提供此授權。
    Please represent that the submission is your original work, and that you have the right to grant the rights to upload.
  • 若欲上傳已出版的全文電子檔,可使用Open policy finder網站查詢,以確認出版單位之版權政策。
    Please use Open policy finder to find a summary of permissions that are normally given as part of each publisher's copyright transfer agreement.
  • 網站簡介 (Quickstart Guide)
  • 使用手冊 (Instruction Manual)
  • 線上預約服務 (Booking Service)
  • 方案一:臺灣大學計算機中心帳號登入
    (With C&INC Email Account)
  • 方案二:ORCID帳號登入 (With ORCID)
  • 方案一:定期更新ORCID者,以ID匯入 (Search for identifier (ORCID))
  • 方案二:自行建檔 (Default mode Submission)
  • 方案三:學科館員協助匯入 (Email worklist to subject librarians)

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science