Repository logo
  • English
  • 中文
Log In
Have you forgotten your password?
  1. Home
  2. College of Management / 管理學院
  3. Business Administration / 工商管理學系暨商學研究所
  4. An intelligent fast sales forecasting model for fashion products
 
  • Details

An intelligent fast sales forecasting model for fashion products

Journal
Expert Systems with Applications
Journal Volume
38
Journal Issue
6
Pages
7373-7379
Date Issued
2011
Author(s)
Yu Y.
TSAN MING CHOI  
Hui C.-L.
DOI
10.1016/j.eswa.2010.12.089
URI
https://www.scopus.com/inward/record.uri?eid=2-s2.0-79951578472&doi=10.1016%2fj.eswa.2010.12.089&partnerID=40&md5=183c554565f1352dd69f1b7f746dce40
https://scholars.lib.ntu.edu.tw/handle/123456789/612383
Abstract
Sales forecasting is crucial in fashion business because of all the uncertainty associated with demand and supply. Many models for forecasting fashion products are proposed in the literature over the past few decades. With the emergence of artificial intelligence models, artificial neural networks (ANN) are widely used in forecasting. ANN models have been revealed to be more efficient and effective than many traditional statistical forecasting models. Despite the reported advantages, it is relatively more time-consuming for ANN to perform forecasting. In the fashion industry, sales forecasting is challenging because there are so many product varieties (i.e.; SKUs) and prompt forecasting result is needed. As a result, the existing ANN models would become inadequate. In this paper, a new model which employs both the extreme learning machine (ELM) and the traditional statistical methods is proposed. Experiments with real data sets are conducted. A comparison with other traditional methods has shown that this ELM fast forecasting (ELM-FF) model is quick and effective. ? 2010 Elsevier Ltd. All rights reserved.
Subjects
Artificial neural network; Extreme learning machine; Sales forecasting
Other Subjects
Artificial Neural Network; Demand and supply; Extreme learning machine; Fashion industry; New model; Product variety; Real data sets; Sales forecasting; Statistical forecasting; Learning systems; Neural networks; Sales; Forecasting
Type
journal article

臺大位居世界頂尖大學之列,為永久珍藏及向國際展現本校豐碩的研究成果及學術能量,圖書館整合機構典藏(NTUR)與學術庫(AH)不同功能平台,成為臺大學術典藏NTU scholars。期能整合研究能量、促進交流合作、保存學術產出、推廣研究成果。

To permanently archive and promote researcher profiles and scholarly works, Library integrates the services of “NTU Repository” with “Academic Hub” to form NTU Scholars.

總館學科館員 (Main Library)
醫學圖書館學科館員 (Medical Library)
社會科學院辜振甫紀念圖書館學科館員 (Social Sciences Library)

開放取用是從使用者角度提升資訊取用性的社會運動,應用在學術研究上是透過將研究著作公開供使用者自由取閱,以促進學術傳播及因應期刊訂購費用逐年攀升。同時可加速研究發展、提升研究影響力,NTU Scholars即為本校的開放取用典藏(OA Archive)平台。(點選深入了解OA)

  • 請確認所上傳的全文是原創的內容,若該文件包含部分內容的版權非匯入者所有,或由第三方贊助與合作完成,請確認該版權所有者及第三方同意提供此授權。
    Please represent that the submission is your original work, and that you have the right to grant the rights to upload.
  • 若欲上傳已出版的全文電子檔,可使用Open policy finder網站查詢,以確認出版單位之版權政策。
    Please use Open policy finder to find a summary of permissions that are normally given as part of each publisher's copyright transfer agreement.
  • 網站簡介 (Quickstart Guide)
  • 使用手冊 (Instruction Manual)
  • 線上預約服務 (Booking Service)
  • 方案一:臺灣大學計算機中心帳號登入
    (With C&INC Email Account)
  • 方案二:ORCID帳號登入 (With ORCID)
  • 方案一:定期更新ORCID者,以ID匯入 (Search for identifier (ORCID))
  • 方案二:自行建檔 (Default mode Submission)
  • 方案三:學科館員協助匯入 (Email worklist to subject librarians)

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science