Repository logo
  • English
  • 中文
Log In
Have you forgotten your password?
  1. Home
  2. College of Engineering / 工學院
  3. Mechanical Engineering / 機械工程學系
  4. Accelerated and Stabilized Meshfree Method for Impact-Blast Modeling
 
  • Details

Accelerated and Stabilized Meshfree Method for Impact-Blast Modeling

Start Page
92
End Page
104
ISBN (of the container)
9780784482896
Date Issued
2020
Author(s)
Chen, Jiunshyan
Baek, Jonghyuk
TSUNG-HUI HUANG  
Hillman, Michael C.
DOI
10.1061/9780784482896.010
URI
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85083084202&doi=10.1061%2F9780784482896.010&partnerID=40&md5=d56ed7cb4b12e9c7402d23f49511c5a6
https://scholars.lib.ntu.edu.tw/handle/123456789/732541
Abstract
Meshfree methods such as the reproducing kernel particle method (RKPM) are well suited for modeling materials and solids undergoing fracture and damage processes, and nodal integration is a natural choice for modeling this class of problems. However, nodal integration suffers from spatial instability, and the excessive material deformation and damage process could also lead to kernel instability in RKPM. This paper reviews the recent advances in nodal integration for meshfree methods that are stable, accurate, and with optimal convergence. A variationally consistent integration (VCI) is introduced to allow correction of low order quadrature rules to achieve optimal convergence, and several stabilization techniques for nodal integration are employed. The application of the stabilized RKPM with nodal integration for shock modeling, fracture to damage multiscale mechanics, and materials modeling in extreme events, are demonstrated. These include the modeling of man-made disasters such as fragment-impact processes, penetration, shock, and blast events will be presented to demonstrate the effectiveness of the new developments.
Event(s)
Structures Congress 2020
Subjects
Consistent Integrations
Fracture And Damages
Man-made Disasters
Material Deformation
Multi-scale Mechanics
Optimal Convergence
Reproducing Kernel Particle Method
Stabilization Techniques
Integration
Publisher
American Society of Civil Engineers (ASCE) onlinejls@asce.org 1801 Alexander Bell DriveGEO Reston VA 20191 Alabama
Description
Structures Congress 2020. St. Louis; MO. Conference code: 158753
Type
conference paper

臺大位居世界頂尖大學之列,為永久珍藏及向國際展現本校豐碩的研究成果及學術能量,圖書館整合機構典藏(NTUR)與學術庫(AH)不同功能平台,成為臺大學術典藏NTU scholars。期能整合研究能量、促進交流合作、保存學術產出、推廣研究成果。

To permanently archive and promote researcher profiles and scholarly works, Library integrates the services of “NTU Repository” with “Academic Hub” to form NTU Scholars.

總館學科館員 (Main Library)
醫學圖書館學科館員 (Medical Library)
社會科學院辜振甫紀念圖書館學科館員 (Social Sciences Library)

開放取用是從使用者角度提升資訊取用性的社會運動,應用在學術研究上是透過將研究著作公開供使用者自由取閱,以促進學術傳播及因應期刊訂購費用逐年攀升。同時可加速研究發展、提升研究影響力,NTU Scholars即為本校的開放取用典藏(OA Archive)平台。(點選深入了解OA)

  • 請確認所上傳的全文是原創的內容,若該文件包含部分內容的版權非匯入者所有,或由第三方贊助與合作完成,請確認該版權所有者及第三方同意提供此授權。
    Please represent that the submission is your original work, and that you have the right to grant the rights to upload.
  • 若欲上傳已出版的全文電子檔,可使用Open policy finder網站查詢,以確認出版單位之版權政策。
    Please use Open policy finder to find a summary of permissions that are normally given as part of each publisher's copyright transfer agreement.
  • 網站簡介 (Quickstart Guide)
  • 使用手冊 (Instruction Manual)
  • 線上預約服務 (Booking Service)
  • 方案一:臺灣大學計算機中心帳號登入
    (With C&INC Email Account)
  • 方案二:ORCID帳號登入 (With ORCID)
  • 方案一:定期更新ORCID者,以ID匯入 (Search for identifier (ORCID))
  • 方案二:自行建檔 (Default mode Submission)
  • 方案三:學科館員協助匯入 (Email worklist to subject librarians)

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science