Publication: Gas-Phase Combustion Synthesis of Particles of Titania and Alumina with TTIP and AIP in the Premixed Methane Flame
dc.contributor | 馬小康 | en |
dc.contributor.author | Li, Kuo-Ting | en |
dc.creator | Li, Kuo-Ting | en |
dc.date | 2004 | en |
dc.date.accessioned | 2007-11-28T07:11:29Z | |
dc.date.accessioned | 2018-06-28T16:38:56Z | |
dc.date.available | 2007-11-28T07:11:29Z | |
dc.date.available | 2018-06-28T16:38:56Z | |
dc.date.issued | 2004 | |
dc.description.abstract | Titania/alumina ceramic powders (TiO2/ Al2O3/ TiO2˙Al2O3) was studied by combustion synthesis as volatilized precursors in premixed CH4+O2+N2 flame. The experiment was used 0.32% titanium precursor (TTIP) under different oxidizer composition conditions. When the molar ratio of oxygen to nitrogen (O2/N2) was 40/60, the result showed that the anatase content was 97.7 wt%. Oppositely, the anatase phase transform to the rutile phase gradually when the molar ratio of oxygen to nitrogen was reducing. Beside the effect of the temperature, the results also showed that oxygen content was the key to control crystalline phase changes. In similar way, the crystalline phase changes were found in the order of Al2O3-γ→δ→θ→ | en |
dc.description.tableofcontents | 目 錄 頁碼 中文摘要 I 英文摘要 II 目 錄 III 圖目錄 VI 表目錄 VIII 附錄 VIII 符號表 IX 章 節 頁 碼 第一章 導論 - 1 - 1.1前言 - 1 - 1.2研究背景 - 2 - 1.3研究目的 - 3 - 第二章 化學反應機構原理與相關文獻回顧 - 4 - 2.1化學反應機構的基本簡介 - 4 - 2.1.1反應機構與化學反應速率的關係 - 5 - 2.1.2甲烷燃燒化學反應機構的介紹 - 7 - 2.2文獻回顧 - 9 - 2.2.1 TiO2之相關文獻 - 9 - 2.2.2 Al2O3之相關文獻 - 13 - 2.2.3其他相關文獻 - 15 - 第三章 實驗研究方法 - 18 - 3.1實驗架構與說明 - 18 - 3.1.1基本架構和參數定義 - 18 - 3.1.2 TTIP/ TiCl4/AIP的介紹 - 19 - 3.2實驗設備 - 20 - 3.2.1燃燒器系統 - 20 - 3.2.2燃料輸送系統 - 21 - 3.2.3其他設備 - 22 - 3.2.4 儀器校正 - 23 - 3.2.4.1流量計校正 - 23 - 3.2.4.2熱電偶校正 - 24 - 3.3實驗步驟 - 25 - 3.3.1實驗前之準備 - 25 - 3.3.2火焰溫度場之量測及現象觀察 - 26 - 3.3.3燃燒產物的收集與分析 - 26 - 第四章 結果與討論 - 28 - 4.1 前置物濃度對火焰溫度之影響 - 28 - 4.2 產物晶相之分析 - 29 - 4.2.1產物TiO2部分 - 29 - 4.2.1.1調整氧氮比例對TiO2晶相之影響 - 29 - 4.2.1.2前置物濃度對TiO2晶相之影響 - 31 - 4.2.1.3收集產物高度對TiO2晶相之影響 - 32 - 4.2.2產物Al2O3部分 - 34 - 4.2.2.1調整氧氮比例對Al2O3晶相之影響 - 34 - 4.2.2.2前置物濃度對Al2O3晶相之影響 - 35 - 4.2.2.3收集產物高度對Al2O3晶相之影響 - 35 - 4.2.3 TiO2˙Al2O3之晶相分析 - 36 - 4.3 產物粒徑之分析 - 36 - 4.3.1產物TiO2部分 - 36 - 4.3.2產物Al2O3部分 - 37 - 4.4 其他相關分析 - 38 - 4.4.1能量散布光譜儀(EDS) - 38 - 4.4.2前置物PH值之量測 - 38 - 第五章、結論與建議 - 40 - 5.1結論 - 40 - 5.1.1火焰之溫度量測 - 40 - 5.1.2產物之晶相分析 - 40 - 5.1.2產物之粒徑分析 - 41 - 5.2建議 - 42 - 參考文獻 - 43 - 圖目錄 圖1. 系統設備圖 - 48 - 圖2. 實驗燃燒器示意圖 - 48 - 圖3. 火焰圖(ψ=1.0,調整氧氮比例) - 49 - 圖4. 火焰溫度分佈圖(ψ=1.0,調整氧氮比例) - 49 - 圖5. 火焰溫度分佈圖(ψ=1.0,調整前置物TTIP濃度) - 50 - 圖6.火焰溫度分佈圖(ψ=1.0,調整前置物TiCl4濃度) - 50 - 圖7.火焰溫度分佈圖(ψ=1.0,調整前置物AIP濃度) - 51 - 圖8.TiO2晶相變化-XRD圖譜(調整氧氮比例) - 51 - 圖9.TiO2晶相重量百分率分佈圖(調整氧氮比例) - 52 - 圖10.TiO2晶相變化-XRD圖譜(調整氧氮比例) - 52 - 圖11.TiO2晶相重量百分率分佈圖(調整氧氮比例) - 53 - 圖12.TiO2晶相重量百分率分佈圖(TTIP與TiCl4,調整氧氮比例) - 53 - 圖13.TiO2晶相變化-XRD圖譜(調整前置物TTIP濃度) - 54 - 圖14.TiO2晶相重量百分率分佈圖(調整前置物TTIP濃度) - 54 - 圖15.TiO2晶相變化-XRD圖譜(調整前置物TiCl4濃度) - 55 - 圖16.TiO2晶相重量百分率分佈圖(調整前置物TiCl4濃度) - 55 - 圖17.TiO2晶相重量百分率分佈圖(TTIP與TiCl4,改變前置物濃度) - 56 - 圖18.TiO2晶相變化-XRD圖譜(改變收集高度) - 56 - 圖19.TiO2晶相重量百分率分佈圖(改變收集高度) - 57 - 圖20.TiO2晶相變化-XRD圖譜(改變收集高度) - 57 - 圖21.TiO2晶相重量百分率分佈圖(改變收集高度) - 58 - 圖22.TiO2晶相重量百分率分佈圖(TTIP與TiCl4,改變收集高度) - 58 - 圖23.Al2O3-XRD晶相圖譜(ψ=1.0,AIP=1.22%,O2/N2=20/80) - 59 - 圖24.Al2O3-XRD晶相圖譜(ψ=1.0,AIP=1.22%,O2/N2=30/70) - 59 - 圖25.Al2O3-XRD晶相圖譜(ψ=1.0,AIP=1.22%,O2/N2=35/65) - 60 - 圖26.Al2O3-XRD晶相圖譜(ψ=1.0,AIP=1.22%,O2/N2=40/60) - 60 - 圖27-1.Al2O3-XRD晶相圖譜(ψ=1.0,AIP=1.72%,O2/N2=35/65) - 61 - 圖27-2.Al2O3-XRD晶相圖譜(ψ=1.0,AIP=1.50%,O2/N2=35/65) - 61 - 圖27-3.Al2O3-XRD晶相圖譜(ψ=1.0,AIP=1.05%,O2/N2=35/65) - 62 - 圖28-1.Al2O3-XRD晶相圖譜(ψ=1.0,AIP=1.22%,O2/N2=35/65,H=4cm) - 62 - 圖28-2.Al2O3-XRD晶相圖譜(ψ=1.0,AIP=1.22%,O2/N2=35/65,H=3cm) - 63 - 圖29-1.TiO2˙Al2O3產物之XRD圖譜(O2/N2=20/80) - 63 - 圖29-2.TiO2˙Al2O3產物之XRD圖譜(O2/N2=40/60) - 64 - 圖30-1.TiO2粒徑分析之TEM圖(TTIP=0.32%,O2/N2=20/80,H=5cm) - 64 - 圖30-2.TiO2粒徑分析之TEM圖(TTIP=0.32%,O2/N2=20/80,H=5cm) - 65 - 圖31.TiO2粒徑分析之TEM圖(TTIP=0.32%,O2/N2=40/60,H=5cm) ………...- 65 - 圖32.TiO2粒徑分析之TEM圖(TiCl4=0.32%,O2/N2=20/80,H=5cm)………..- 66 - 圖33.TiO2粒徑分析之TEM圖(TiCl4=0.32%,O2/N2=40/60,H=5cm) ………..- 66 - 圖34-1.TiO2粒徑分析之TEM圖(TTIP=0.32%,O2/N2=20/80,H=4cm) - 67 - 圖34-2.TiO2粒徑分析之TEM圖(TTIP=0.32%,O2/N2=20/80,H=3cm) - 67 - 圖35.Al2O3粒徑分析之TEM圖(AIP=1.22%,O2/N2=40/60,H=5cm) ……..…..- 68 - 圖36. Al2O3粒徑分析之TEM圖(AIP=1.22%,O2/N2=20/80,H=5cm)………...- 68 - 圖37-1. Al2O3粒徑分析之TEM圖(AIP=1.22%,O2/N2=20/80,H=4cm) - 69 - 圖37-2. Al2O3粒徑分析之TEM圖(AIP=1.22%,O2/N2=20/80,H=3cm) - 69 - 圖38- 1.產物之元素分析(ψ=1.0,TTIP=0.32%,O2/N2=40/60,H=5cm) - 70 - 圖38-2.產物之元素分析(ψ=1.0,AIP=1.22%,O2/N2=40/60,H=5cm) - 70 - 圖38-3.產物之元素分析(ψ=1.0,Al/Ti=4.3,O2/N2=40/60) - 71 - 圖39-1.PH值量測標準表 - 72 - 圖39-2.前置物TiCl4之PH值量測圖 - 72 - 圖39-3.前置物TTIP之PH值量測圖 - 72 - 表目錄 表1- 1甲烷-空氣之25條主要反應機構 - 73 - 表1-2 H2/O2 reaction system 主要機構 - 75 - 表1-3 CH4/O2 reaction system 4條主要機構 - 76 - 表2-1 TTIP的燃燒操作條件 - 77 - 表2-2 TiCl4的燃燒操作條件 - 79 - 表2-3 AIP的燃燒操作條件 - 81 - 表3-1 TTIP、TiCl4以及AIP的基本介紹 - 83 - 表4- 1不同O2/N2莫耳分率下合成TiO2顆粒對Anatase含量之重量百分比(ψ=1.0;TTIP=0.32%;TiCl4=0.32%) - 85 - 表4- 2不同收集高度下合成TiO2顆粒對Anatase含量之重量百分比(ψ=1.0;TTIP=0.32%;TiCl4=0.32%) - 86 - 附錄 A.相關精密儀器的介紹 - 87 - A.1 XRD,X-ray diffraction(X射線粉末繞射儀) - 87 - A.2 TEM(穿透式電子顯微鏡) - 89 - A.3 EDS(能量散布光譜儀) - 92 - A.4雷射散射儀 ………………………………………………………………...- 93 - A.5 X射線繞射線線寬法 ……………………………………………………...- 94 - | zh_TW |
dc.format.extent | 1540551 bytes | |
dc.format.mimetype | application/pdf | |
dc.identifier | zh-TW | en |
dc.identifier.uri | http://ntur.lib.ntu.edu.tw//handle/246246/61025 | |
dc.identifier.uri.fulltext | http://ntur.lib.ntu.edu.tw/bitstream/246246/61025/1/ntu-93-R91522304-1.pdf | |
dc.language | zh-TW | en |
dc.language.iso | en_US | |
dc.relation.reference | [1] 徐仁輝,”粉末冶金概論”,新文京開發出版有限公司,民國 91年。 [2] 龔建華 著,林唯芳 審訂,”你不可不知的奈米科技”,世茂出版社,民國91年。 [3] 垰田博史,”光觸媒圖解”,商周出版,民國92年。 [4] 高濂、李蔚,”奈米陶瓷”,五南圖書出版股份有限公司, 民國92年11月。 [5] 葉山豪,”TTIP於火焰中合成TiO2奈米顆粒之研究”,國立台灣大學機械工程研究所碩士論文,民國92年6月。 [6] 趙以諾,”以有機矽化合物HMDSA與HMDSO在丙烷預混火燄中合成奈米級矽化合物顆粒之研究”,國立台灣大學機械工程研究所博士論文,民國92年6月。 [7] Spurr, R. A. and Myers, H., “Quantitative Analysis of Anatase- Rutile Mixtures with an X-ray Diffractometer,” Analytical Chemistry, Vol. 29, pp. 760-762 ,1957. [8] Sokolowski, M., Sokolowska, A., Michalski, A. and Gokieli, B., ”The in-flame-reaction method for Al2O3 aerosol formation” Journal of Aerosol Scinece, Vol.8, pp.219-230, 1976. [9] Suyama, Y. and Kato, A., “Effect of additives on the formation of TiO2 Particles by Vapor Phase Reaction”Journal of American Ceramic Society, Vol.68, pp.154-156, 1985. [10] Parker, F. J. and Rice, R. W., ”Correlation between Grain Size and Thermal Expansion for Aluminum Titanate Materials”, Journal of American Ceramic Society, Vol. 72, pp. 2364-2366, 1989. [11] Lewis, D. J., “Technique for producing mullite and other mixed-oxide systems”Journal American Ceramic Society, Vol. 74, pp.2410-2413, 1991. [12] Akhtar, M. K., Xiong, Y. and Pratsinis, S. E., “Vapor synthesis of titania powder by titanium tetrachloride oxidation”AIChE Journal, Vol. 37, No. 10, pp. 1561-1570, 1991. [13] Chung, S. L., Sheu, Y.C., and Tsai, M.S., “Formation of SiO2,Al2O3 and 3Al2O3.2SiO2 Particles in a Counterflow Diffusion Flame”, Journal of American Ceramic Society, Vol.75, pp. 117-123, 1992. [14] Hung, C.H. and Katz, J. L., “Formation of mixed oxide powders in flames : Part Ⅰ. TiO2-SiO2”, Journal of materials research, Vol.7, No.7, pp. 1861-1869, 1992. [15] Akhtar, M. K. and Pratsinis, S. E., “Dopants in Vapor-Phase Synthesis of Titania Powders”, Journal American Ceramic Society, Vol.75, pp. 3408-3416, 1992. [16] Hung, C. H., Miquel, P. F., and Katz, J. L., “Formation of mixed oxide powders in flames : Part Ⅱ. SiO2-GeO2 and Al2O3-TiO2”, Journal of materials research, Vol.7, No.7, pp. 1870-1875, 1992. [17] Nobert, P., and Bernd, R., “Reduced Kinetic Mechanisms for Application in Combustion Systems,” Springer-Verlag, ISBN: 3-540-56372-5 (1992). [18] Miquel, P. F., Hung, C.H. and Katz, J. L., “Formation of V2O5-based mixed oxides in flames”, Journal of materials research, Vol.8, No.9, pp. 2404-2413, 1993. [19] Akhtar, M. K. and Pratsinis, S. E., “Vapor phase synthesis of Al-doped titania powders”, Journal of materials research, Vol.9, No.5, pp. 1241-1249, 1994. [20] Lee, H. L. and Lee, H. S., “Preparation of Al2O3-TiO2 nanocomposite powder”, Journal of Materials Science, Vol.13, pp. 316-318, 1994. [21] Vemury, S. and Pratsinis, S. E., “Dopants in Flame Synthesis of Titania”, Journal American Ceramic Society, Vlo.78, pp. 2984-2992, 1995. [22] Pratsinis, S. E., Zhu, W. and Vemury, S., “The role of gas mixing in flame synthesis of titania powders”, Powder Technology, Vol. 86, pp. 87-93, 1996. [23] Pratsinis, S. E. and Vemury, S., “Particle formation in gases : a review”, Powder Technology, Vol. 88, pp. 267-273, 1996. [24] Pratsinis, S. E., “Flame Aerosol Synthesis of Ceramic Powders”, Energy Combustion Science, Vol.24, pp. 197-219, 1998. [25] Wooldridge, M. S., “Gas-Phase Combustion Synthesis of Particles”, Energy Combustion Science, Vol.24, pp. 63-87, 1998. [26] Ehrman, S. H., Friendlander, S. K. and Zachariah, M. R., “Characteristics of SiO2/TiO2 nanocomposite particles formed in a premixed flat flame”, Journal Aerosol Science, Vol. 29, No. 56, pp. 687-706, 1998. [27] Gunko, V. M., Zarko, V. I., Turov, V. V., Leboda, R., Chibowski, E., Pakhlov, E. M., Goncharuk, E. V., Marciniak, M., Voronin, E. F. and Chuiko, A. A., “Characterization of fumed Alumina/ Silica/Titania in the gas phase and in aqueous suspension”, Journal of Colloid and Interface Science, Vol. 220, pp. 302-323, 1999. [28] Skandan, G., Chen, Y.J., Glumac, N. and Kear, B.H., “Synthesis of oxide nanoparticles in low pressure flames”, Vol.11 ,No.22, pp. 149-158, 1999. [29] Yeh, C.L., Zhao, E. and Ma, H. K., “An Experimental Investigation of Combustion Synthesis of Silicon Dioxide (SiO2) Particles in Premixed Flames,” Combustion Science and Technology, Vol. 173, pp. 25-46 ,2001. [30] Katzer, M., Weber, A. P. and Kasper, G., “The effects of electrical fields on growth of titania particles formed in a CH4-O2 diffusion flame”, Journal of Aerosol Scinece, Vol.32, pp.1045-1067, 2001. [31] Arabi-Katbi, O. I. and Pratsinis, S. E., “Monitoring the Flame Synthesis of TiO2 Particles by in-situ FTIR Spectroscopy and Thermophoretic Sampling”, Combustion and Flame, Vol.124, pp. 560-572, 2001. [32] Kammler, H. K. and Pratsinis, S. E., ”Flame Temperature Measurements during Electrically Assisted Aerosol Synthesis of Nanoparticles”, Combustion and Flame, Vol.128, pp. 369-381, 2002. [33] Panda, P. K., Kannan, T. S., Dubois, J., Olagnon, C. and Fantozzi, G., “Thermal shock and thermal fatigue study of alumina”, Journal of the European Ceramic Society, Vol.22, pp. 2187-2196, 2002. [34] Varatharajan, K., Dash, S., Arunkumar, A., Nithya, R., Tyagi, A. K. and Raj, B., “Synthesis of nanocrystalline | zh_TW |
dc.subject | 燃燒合成 | en |
dc.subject | 銳鈦礦 | en |
dc.subject | 預混甲烷火焰 | en |
dc.subject | 鋁前置物AIP | en |
dc.subject | 金紅石 | en |
dc.subject | 鈦前置物TTIP | en |
dc.subject | aluminum precursor (AIP) | en |
dc.subject | combustion synthesis | en |
dc.subject | rutile | en |
dc.subject | titanium precursor (TTIP) | en |
dc.subject | premixed CH4 flame | en |
dc.subject | anatase | en |
dc.title | Gas-Phase Combustion Synthesis of Particles of Titania and Alumina with TTIP and AIP in the Premixed Methane Flame | en |
dc.type | thesis | en |
dspace.entity.type | Publication |
Files
Original bundle
1 - 1 of 1