Repository logo
  • English
  • 中文
Log In
Have you forgotten your password?
  1. Home
  2. College of Bioresources and Agriculture / 生物資源暨農學院
  3. Agronomy / 農藝學系
  4. Molecular Characterization and Abiotic Stresses Tolerance Analysis in HvICE1 and AtICE1 ( Inducer of CBF Expression ) Over-expression Transgenic Rice (Oryza sativa L.)
 
  • Details

Molecular Characterization and Abiotic Stresses Tolerance Analysis in HvICE1 and AtICE1 ( Inducer of CBF Expression ) Over-expression Transgenic Rice (Oryza sativa L.)

Date Issued
2008
Date
2008
Author(s)
Fang, Hsin-Hsiu
URI
http://ntur.lib.ntu.edu.tw//handle/246246/180043
Abstract
Through cold acclimation, plant can increase its tolerance capability upon exposure to low temperature. Previous study showed that CBFs/DREBs (C-repeat binding factor/ dehydration response element binding factor) were the major transcription factors that involved in cold acclimation process. The function of CBFs/DREBs evolved highly conserve between dicot and monocot. Recent study from Arabidopsis has defined ICE1 (inducer of CBF expression), a bHLH (basic helix-loop-helix) protein, as an important transcriptional factor that acts on the promoter of CBF gene and regulates its expression. In this study, based on rice functional genomic approach with transgenic rice analysis, we aimed to understand physiological function of Arabidopsis AtICE1 and Barly HvICE1 under different abiotic stresses. Meanwhile, the action mold of AtICE1 and HvICE1 will be compared under various stresses. To reach this goal, first, by bioinformatics search at least four of OsICE genes were found in rice genome. From currently available rice microarray data revealed that OsICE1 expression was highly induced by salt and drought but not affected in low temperature. OsICE2 and OsICE3 transcripts were repressed upon exposure to salt and drought environment. On the other hand, OsICE4 expression was salt and drought induced. Besides, OsICE3 and OsICE4 gene expression were both increased under low temperature stress. Then, we used TNG67 (Oryza sativa L., japonica; cold and salt tolerant but drought sensitive) and TCN1 (Oryza sativa L., indica; cold and salt sensitive but drought resistant) rice cultivars to investigate OsICEs; OsDREBs and OsDREBs regulon-related downstream genes expression profiles under abiotic stress treatments. The results indicated that OsICE2 expression level were down-regulated quickly in TCN1 at low temperature. And the amount of OsDREB1F、OsDREB1G、OsDREB1H、OsDREB1I and OsDREB1J expressions in TCN1 were also less than those of TNG67. o further elucidate the physiological effects of AtICE1 and HvICE1 under various abiotic stresses, we generated ICEs-overexpressed transgenic rice lines, 35S::AtICE1 and 35S::HvICE1. By Southern blotting analysis, TAIL-PCR, and PCR-based genotyping, we determined the copy numbers of transgene, T-DNA inserted flanking sequence and obtained either one or two copies of homozygous transgenic lines. RT-PCR result showed under normal growth condition indeed we can detect the overexpression of ICE genes in 35S::AtICE1 and 35S:: HvICE1 transgenic rices. However; compared to low-temperature stress-treated wild type plant, the whole gene expression profile of ICE-corresponding downstream genes (OsDREBs) did not obviously changed. The physiological analysis of abiotic stress tolerance assay, including chlorophyll, malondialdehyde (MDA) and proline content measurements showed that 35S::AtICE1 transgene rice with OsDREB1A; 1B; 1C and 2B transcripts enhanced could increase cold tolerance but not for drought and salt tolerance. 35S::HvICE1 transgene rice that with slightly OsDREB 1B; 1C and 1E gene expression increased could raise up its drought and cold tolerance but not salt tolerance. aken together, the above results suggested that AtICE1 and HvICE1 may function not exactly the same in cold acclimation pathway. This may due to other ICEs co-operate in the regulation of CBFs/DREBs and CBFs/DREBs regulon-related gene expression or ICEs activity can be adjusted through post-translation modifications that lead to different responses when exposure to different abiotic stresses.
Subjects
cold acclimation
cold tolerance
abiotic stress
transgenic rice
Type
thesis
File(s)
Loading...
Thumbnail Image
Name

ntu-97-R94621111-1.pdf

Size

23.32 KB

Format

Adobe PDF

Checksum

(MD5):d9452dab10d01a2697c63c1f2f3f2966

臺大位居世界頂尖大學之列,為永久珍藏及向國際展現本校豐碩的研究成果及學術能量,圖書館整合機構典藏(NTUR)與學術庫(AH)不同功能平台,成為臺大學術典藏NTU scholars。期能整合研究能量、促進交流合作、保存學術產出、推廣研究成果。

To permanently archive and promote researcher profiles and scholarly works, Library integrates the services of “NTU Repository” with “Academic Hub” to form NTU Scholars.

總館學科館員 (Main Library)
醫學圖書館學科館員 (Medical Library)
社會科學院辜振甫紀念圖書館學科館員 (Social Sciences Library)

開放取用是從使用者角度提升資訊取用性的社會運動,應用在學術研究上是透過將研究著作公開供使用者自由取閱,以促進學術傳播及因應期刊訂購費用逐年攀升。同時可加速研究發展、提升研究影響力,NTU Scholars即為本校的開放取用典藏(OA Archive)平台。(點選深入了解OA)

  • 請確認所上傳的全文是原創的內容,若該文件包含部分內容的版權非匯入者所有,或由第三方贊助與合作完成,請確認該版權所有者及第三方同意提供此授權。
    Please represent that the submission is your original work, and that you have the right to grant the rights to upload.
  • 若欲上傳已出版的全文電子檔,可使用Open policy finder網站查詢,以確認出版單位之版權政策。
    Please use Open policy finder to find a summary of permissions that are normally given as part of each publisher's copyright transfer agreement.
  • 網站簡介 (Quickstart Guide)
  • 使用手冊 (Instruction Manual)
  • 線上預約服務 (Booking Service)
  • 方案一:臺灣大學計算機中心帳號登入
    (With C&INC Email Account)
  • 方案二:ORCID帳號登入 (With ORCID)
  • 方案一:定期更新ORCID者,以ID匯入 (Search for identifier (ORCID))
  • 方案二:自行建檔 (Default mode Submission)
  • 方案三:學科館員協助匯入 (Email worklist to subject librarians)

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science