Repository logo
  • English
  • 中文
Log In
Have you forgotten your password?
  1. Home
  2. College of Science / 理學院
  3. Chemistry / 化學系
  4. Green Synthesis and Catalytic Application of Gold Nanomaterials
 
  • Details

Green Synthesis and Catalytic Application of Gold Nanomaterials

Date Issued
2010
Date
2010
Author(s)
Chen, Yi-Cheng
URI
http://ntur.lib.ntu.edu.tw//handle/246246/257396
Abstract
In this work, three-dimensional branched Au nanomaterials were produced at high yield by reacting an aqueous solution of sodium tetrachloroaurate with a tea extract at ambient temperature and pressure. By varying the tea concentrations at a constant amount of sodium tetrachloroaurate, different size and shape of Au nanomaterials were separately prepared. We also synthesized other noble metal nanoparticles such as Ag, Pt and Pd by tea extract. UV-vis absorption, energy dispersive X-ray, X-ray diffraction, and transmission electron microscopy measurements were conducted to characterize the as-prepared Au nanomaterials. The results revealed that the branched Au nanomaterials (50 nm) were formed through the self-assembly of short nanorods (8 nm in width and 12 nm in length). According to the experiments, we find out that the polyphenols in tea extract play an important role of reducing Au3+ ion to Au and stabling the branched Au nanomaterials. By conducting Raman measurements, we found that the branched Au nanomaterials was useful on enhanced signal further than 10 times through surface-enhanced Raman scattering (SERS) effect and Ag nanoshells when adopting 4-mercaptobenzoic acid as report. We believe the Au/Ag nanomaterials have the potential to be good SERS substrates because of the stable signal and clean surface. Through the interaction of polyphenol and Titanium metal (ligand to metal charge transfer), the branched Au nanomaterials were easily deposited on the surface of TiO2 nanomaterials. On the photocatalysis, we have found the photodegradation of the methylene blue is further enhanced in TiO2(P25) about 2.50 folds and TiO2(P210) about 2.05 folds through the deposition of the branched Au nanomaterials. Consequently, we believe the branched Au materials have the potential to be good SERS substrates and photocatalysis enhancers because of the stable signal and clean surface.
Subjects
Gold nanomaterials
Green chemistry
Catechin
Photocatalysis
Surface enhanced Raman scattering (SERS)
Type
thesis
File(s)
Loading...
Thumbnail Image
Name

ntu-99-R97223155-1.pdf

Size

23.32 KB

Format

Adobe PDF

Checksum

(MD5):fa714036d8a384569c910b43cbb03abf

臺大位居世界頂尖大學之列,為永久珍藏及向國際展現本校豐碩的研究成果及學術能量,圖書館整合機構典藏(NTUR)與學術庫(AH)不同功能平台,成為臺大學術典藏NTU scholars。期能整合研究能量、促進交流合作、保存學術產出、推廣研究成果。

To permanently archive and promote researcher profiles and scholarly works, Library integrates the services of “NTU Repository” with “Academic Hub” to form NTU Scholars.

總館學科館員 (Main Library)
醫學圖書館學科館員 (Medical Library)
社會科學院辜振甫紀念圖書館學科館員 (Social Sciences Library)

開放取用是從使用者角度提升資訊取用性的社會運動,應用在學術研究上是透過將研究著作公開供使用者自由取閱,以促進學術傳播及因應期刊訂購費用逐年攀升。同時可加速研究發展、提升研究影響力,NTU Scholars即為本校的開放取用典藏(OA Archive)平台。(點選深入了解OA)

  • 請確認所上傳的全文是原創的內容,若該文件包含部分內容的版權非匯入者所有,或由第三方贊助與合作完成,請確認該版權所有者及第三方同意提供此授權。
    Please represent that the submission is your original work, and that you have the right to grant the rights to upload.
  • 若欲上傳已出版的全文電子檔,可使用Open policy finder網站查詢,以確認出版單位之版權政策。
    Please use Open policy finder to find a summary of permissions that are normally given as part of each publisher's copyright transfer agreement.
  • 網站簡介 (Quickstart Guide)
  • 使用手冊 (Instruction Manual)
  • 線上預約服務 (Booking Service)
  • 方案一:臺灣大學計算機中心帳號登入
    (With C&INC Email Account)
  • 方案二:ORCID帳號登入 (With ORCID)
  • 方案一:定期更新ORCID者,以ID匯入 (Search for identifier (ORCID))
  • 方案二:自行建檔 (Default mode Submission)
  • 方案三:學科館員協助匯入 (Email worklist to subject librarians)

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science