Higher Twist Effects in Parton Physics
Date Issued
2005
Date
2005
Author(s)
TSAI, HUNG-MING
DOI
en-US
Abstract
我們發現在部份子物理中的模型無關之結果. 利用手徵微擾法, 我們推導出twist-3的光錐分布振幅的moments的解析修正項. 我們發現pion, kaon 和 eta 粒子的光錐分布振幅的moments具有一些關係式. 另外, 我們也推導出部份子分布函數的moments的非解析和解析修正項. 也發現pion, kaon 和 eta 粒子在味單態的奇數moments具有一關係式. 經由此關係式, 希望未來能夠從pion和kaon的部份子分布函數的實驗值, 來計算出eta的部份子分布函數.
In this thesis, we find out model-independent results for SU(3) violation in higher twist light-cone distribution amplitudes as well as in parton distribution functions. In these results, analytic corrections to moments of twist-3 light-cone distribution amplitudes are obtained while non-analytic corrections don't affect the shape and only contribute to the pre-factor. Some relations among moments of light-cone distribution amplitudes of pion, kaon and eta are worked out. Non-analytic and analytic corrections to the moments of parton distribution functions are derived. Besides, the relation among favor-singlet odd moments of parton distribution functions of pion, kaon and eta is also found out. It is hopeful that the eta parton distribution function is possible to be derived if experimental values of pion and kaon parton distribution functions are both obtained.
Subjects
手徵微擾法
光錐分布振幅
手徵外差法
部份子分布函數
chiral perturbation theory
light-cone distribution amplitude
twist-3
chiral extrapolation
parton distribution function
moment
Type
thesis
File(s)![Thumbnail Image]()
Loading...
Name
ntu-94-R91222016-1.pdf
Size
23.53 KB
Format
Adobe PDF
Checksum
(MD5):a5e62f205bb74c41a868265db76f17bd