Repository logo
  • English
  • 中文
Log In
Have you forgotten your password?
  1. Home
  2. College of Engineering / 工學院
  3. Biomedical Engineering / 醫學工程學系
  4. Ultrasound-guided drug delivery system utilizing piezocatalytic MoS2 nanomaterials for anti-inflammatory therapy
 
  • Details

Ultrasound-guided drug delivery system utilizing piezocatalytic MoS2 nanomaterials for anti-inflammatory therapy

Journal
Nano Energy
Journal Volume
127
Start Page
109732
ISSN
2211-2855
Date Issued
2024-08
Author(s)
Ssu-Chi Lin
Ravindra Joshi
Anindita Ganguly
Snigdha Roy Barman
Arnab Pal
Kuldeep Kaswan
Kuei-Lin Liu
Amit Nain
Fu-Cheng Kao
ZONG-HONG LIN  
DOI
10.1016/j.nanoen.2024.109732
DOI
10.1016/j.nanoen.2024.109732
URI
https://www.scopus.com/record/display.uri?eid=2-s2.0-85193617346&origin=resultslist
https://scholars.lib.ntu.edu.tw/handle/123456789/719640
Abstract
Traditional drug delivery systems lack the potential of controlled drug release, thereby decreasing drug utilization and release efficiency. Herein, a next generation of stimuli-responsive drug delivery platform is designed based on piezocatalytic molybdenum disulfide nanoflowers (MoS2 NFs) which can be triggered by ultrasound (US) stimulation for effective acute inflammation therapy. Under US irradiation, MoS2 NFs undergoes piezocatalysis to generate reactive oxygen species (ROS) owing to piezoelectric polarization, thus releasing loaded anti-inflammatory drug Indomethacin (IND) to the targeted inflammation site. The cumulative release of IND elevated significantly with the increase in the duration for US exposure due to the amplified ROS generation, which displayed a highly controllable nature of the as-designed drug delivery platform. For convenient applications, the IND loaded MoS2 NFs (IND@MoS2 NFs) was functionalized onto commercial dressings and their tunable in-vivo drug release performance was demonstrated in paw edema model. IND@MoS2 NFs upon US irradiation, controllably released IND into the site-specific inflamed paw which significantly inhibited 56 % of paw swelling in 6 h by suppressing the infiltration of neutrophils and expression of pro-inflammatory cytokines such as tumor necrosis factor-α (TNF-α). The highly controllable drug delivery system holds great potential in facilitating personalized, user-friendly theranostic applications with improved patient outcomes.
Subjects
Anti-inflammation
Molybdenum disulfide
Piezocatalytic effect
Reactive oxygen species
Ultrasound drug delivery
SDGs

[SDGs]SDG7

Publisher
Elsevier BV
Description
Article number 109732
Type
journal article

臺大位居世界頂尖大學之列,為永久珍藏及向國際展現本校豐碩的研究成果及學術能量,圖書館整合機構典藏(NTUR)與學術庫(AH)不同功能平台,成為臺大學術典藏NTU scholars。期能整合研究能量、促進交流合作、保存學術產出、推廣研究成果。

To permanently archive and promote researcher profiles and scholarly works, Library integrates the services of “NTU Repository” with “Academic Hub” to form NTU Scholars.

總館學科館員 (Main Library)
醫學圖書館學科館員 (Medical Library)
社會科學院辜振甫紀念圖書館學科館員 (Social Sciences Library)

開放取用是從使用者角度提升資訊取用性的社會運動,應用在學術研究上是透過將研究著作公開供使用者自由取閱,以促進學術傳播及因應期刊訂購費用逐年攀升。同時可加速研究發展、提升研究影響力,NTU Scholars即為本校的開放取用典藏(OA Archive)平台。(點選深入了解OA)

  • 請確認所上傳的全文是原創的內容,若該文件包含部分內容的版權非匯入者所有,或由第三方贊助與合作完成,請確認該版權所有者及第三方同意提供此授權。
    Please represent that the submission is your original work, and that you have the right to grant the rights to upload.
  • 若欲上傳已出版的全文電子檔,可使用Open policy finder網站查詢,以確認出版單位之版權政策。
    Please use Open policy finder to find a summary of permissions that are normally given as part of each publisher's copyright transfer agreement.
  • 網站簡介 (Quickstart Guide)
  • 使用手冊 (Instruction Manual)
  • 線上預約服務 (Booking Service)
  • 方案一:臺灣大學計算機中心帳號登入
    (With C&INC Email Account)
  • 方案二:ORCID帳號登入 (With ORCID)
  • 方案一:定期更新ORCID者,以ID匯入 (Search for identifier (ORCID))
  • 方案二:自行建檔 (Default mode Submission)
  • 方案三:學科館員協助匯入 (Email worklist to subject librarians)

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science