Repository logo
  • English
  • 中文
Log In
Have you forgotten your password?
  1. Home
  2. College of Medicine / 醫學院
  3. School of Medicine / 醫學系
  4. Uremic toxin indoxyl sulfate induces the imbalance of cellular iron metabolism and oxidative stress to interfere with myogenesis in myoblasts.
 
  • Details

Uremic toxin indoxyl sulfate induces the imbalance of cellular iron metabolism and oxidative stress to interfere with myogenesis in myoblasts.

Journal
Chemico-biological interactions
Journal Volume
418
Start Page
Article number 111587
ISSN
1872-7786
Date Issued
2025-05-29
Author(s)
Jhuang, Jia-Hua
CHING-CHIA WANG  
CHIH-KANG CHIANG  
SHING-HWA LIU  
Lan, Kuo-Cheng
DOI
10.1016/j.cbi.2025.111587
URI
https://scholars.lib.ntu.edu.tw/handle/123456789/729961
Abstract
Chronic kidney disease (CKD) leads to the accumulation of uremic toxins such as indoxyl sulfate (IS), which has been linked to myopathy. Iron is essential for muscle growth and differentiation, with ferrous iron (Fe) contributing to intracellular oxidative stress. Although IS known to affect muscle differentiation and regeneration, the underlying mechanisms remain poorly understood. Both iron overload and deficiency can negatively impact muscle growth. We hypothesized that IS impairs myoblast differentiation by disrupting the balance between intracellular oxidative stress and iron metabolism. To test this, we exposed C2C12 myoblasts and primary human skeletal muscle myoblasts to IS during the proliferation phase and maintained IS exposure throughout the differentiation process. IS treatment reduced both intracellular reactive oxygen species (ROS) and free Fe levels during differentiation. It also altered intracellular iron metabolism and upregulated the gene expression and activity of antioxidant-related enzymes, maintaining the cells in a high-antioxidant state and establishing a new oxidative balance. Unexpectedly, Fe (FeSO) supplementation, with or without IS, significantly increased ROS levels and further exacerbated the inhibition of myoblast differentiation induced by IS, suggesting that cellular redox homeostasis was disrupted. These findings reveal that IS induces an imbalance in cellular iron metabolism and oxidative stress, providing new insights into an alternative mechanism by which IS inhibits muscle differentiation and regeneration.
Subjects
Ferrous iron
Indoxyl sulfate
Myoblast differentiation
Oxidative stress
SDGs

[SDGs]SDG3

Publisher
Elsevier Ireland Ltd
Type
journal article

臺大位居世界頂尖大學之列,為永久珍藏及向國際展現本校豐碩的研究成果及學術能量,圖書館整合機構典藏(NTUR)與學術庫(AH)不同功能平台,成為臺大學術典藏NTU scholars。期能整合研究能量、促進交流合作、保存學術產出、推廣研究成果。

To permanently archive and promote researcher profiles and scholarly works, Library integrates the services of “NTU Repository” with “Academic Hub” to form NTU Scholars.

總館學科館員 (Main Library)
醫學圖書館學科館員 (Medical Library)
社會科學院辜振甫紀念圖書館學科館員 (Social Sciences Library)

開放取用是從使用者角度提升資訊取用性的社會運動,應用在學術研究上是透過將研究著作公開供使用者自由取閱,以促進學術傳播及因應期刊訂購費用逐年攀升。同時可加速研究發展、提升研究影響力,NTU Scholars即為本校的開放取用典藏(OA Archive)平台。(點選深入了解OA)

  • 請確認所上傳的全文是原創的內容,若該文件包含部分內容的版權非匯入者所有,或由第三方贊助與合作完成,請確認該版權所有者及第三方同意提供此授權。
    Please represent that the submission is your original work, and that you have the right to grant the rights to upload.
  • 若欲上傳已出版的全文電子檔,可使用Open policy finder網站查詢,以確認出版單位之版權政策。
    Please use Open policy finder to find a summary of permissions that are normally given as part of each publisher's copyright transfer agreement.
  • 網站簡介 (Quickstart Guide)
  • 使用手冊 (Instruction Manual)
  • 線上預約服務 (Booking Service)
  • 方案一:臺灣大學計算機中心帳號登入
    (With C&INC Email Account)
  • 方案二:ORCID帳號登入 (With ORCID)
  • 方案一:定期更新ORCID者,以ID匯入 (Search for identifier (ORCID))
  • 方案二:自行建檔 (Default mode Submission)
  • 方案三:學科館員協助匯入 (Email worklist to subject librarians)

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science