Facile one-pot synthesis of rod-coil bio-block copolymers and uncovering their role in forming the efficient stretchable touch-responsive light emitting diodes
Journal
Chemical Engineering Journal
Journal Volume
418
Date Issued
2021
Author(s)
Jiang D.-H
Ree B.J
Isono T
Xia X.-C
Hsu L.-C
Kobayashi S
Hoon Ngoi K
Chen W.-C
Jao C.-C
Veeramuthu L
Satoh T
Kuo C.-C.
Abstract
Bio-derived optoelectronic material is captivating and sustainable research as it reduces the environmental toxicity and comforting the wearable aspects. Our research involves the synthesis of series of bio-derived polyfluorene-block-poly(δ-decanolactone) (PF-b-PDL) conjugated block copolymers through smart one-pot procedure that involves simple purification for fabricating touch-responsive light-emitting diode (LED) devices. Compared with PF homopolymer, the block copolymers exhibit higher photoluminescence quantum yields and higher exciton binding energies. PF18-b-PDL13 specifically exhibits external quantum efficiency (EQE %) (~6 times higher than PF homopolymer). Moreover, because of coily PDL block inducing a highly stable bound state in block copolymer generating the increment in PL lifetime and exciton binding energies than the homopolymer. Furthermore, the diblock copolymers device exhibits fully solution processability, higher carrier recombination efficiency, flex-stretch stability, good structural integrity and mechanical endurance highlighting the brighter potential of our bio-derived block copolymers for fabricating highly durable wearable stretchable nano and microelectronic devices. © 2021 Elsevier B.V.
Subjects
Flexible wearable device; Light-emitting diode; Polyfluorene; Rod-coil conjugated block copolymer; Smart synthesis
SDGs
Other Subjects
Binding energy; Block copolymers; Efficiency; Excitons; Microelectronics; Quantum efficiency; Quantum theory; Semiconductor quantum wells; Wearable technology; Block co polymers; Environmental toxicity; Flexible wearable device; Lightemitting diode; One-pot synthesis; Optoelectronic materials; Polyfluorenes; Rod-coil; Rod-coil conjugated block copolymer; Smart synthesis; Light emitting diodes
Type
journal article
