Repository logo
  • English
  • 中文
Log In
Have you forgotten your password?
  1. Home
  2. College of Electrical Engineering and Computer Science / 電機資訊學院
  3. Biomedical Electronics and Bioinformatics / 生醫電子與資訊學研究所
  4. Benchmarking of eight recurrent neural network variants for breath phase and adventitious sound detection on a selfdeveloped open-access lung sound database-HF_Lung_V1
 
  • Details

Benchmarking of eight recurrent neural network variants for breath phase and adventitious sound detection on a selfdeveloped open-access lung sound database-HF_Lung_V1

Journal
PLoS ONE
Journal Volume
16
Journal Issue
7
Date Issued
2021
Author(s)
Hsu F.-S
FEI-PEI LAI et al.  
DOI
10.1371/journal.pone.0254134
URI
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85110382476&doi=10.1371%2fjournal.pone.0254134&partnerID=40&md5=fae8b5ec690cfa592d0050ee9ac58a0c
https://scholars.lib.ntu.edu.tw/handle/123456789/607544
Abstract
A reliable, remote, and continuous real-time respiratory sound monitor with automated respiratory sound analysis ability is urgently required in many clinical scenarios-such as in monitoring disease progression of coronavirus disease 2019-to replace conventional auscultation with a handheld stethoscope. However, a robust computerized respiratory sound analysis algorithm for breath phase detection and adventitious sound detection at the recording level has not yet been validated in practical applications. In this study, we developed a lung sound database (HF_Lung_V1) comprising 9,765 audio files of lung sounds (duration of 15 s each), 34,095 inhalation labels, 18,349 exhalation labels, 13,883 continuous adventitious sound (CAS) labels (comprising 8,457 wheeze labels, 686 stridor labels, and 4,740 rhonchus labels), and 15,606 discontinuous adventitious sound labels (all crackles). We conducted benchmark tests using long short-term memory (LSTM), gated recurrent unit (GRU), bidirectional LSTM (BiLSTM), bidirectional GRU (BiGRU), convolutional neural network (CNN)-LSTM, CNN-GRU, CNN-BiLSTM, and CNN-BiGRU models for breath phase detection and adventitious sound detection. We also conducted a performance comparison between the LSTM-based and GRU-based models, between unidirectional and bidirectional models, and between models with and without a CNN. The results revealed that these models exhibited adequate performance in lung sound analysis. The GRU-based models outperformed, in terms of F1 scores and areas under the receiver operating characteristic curves, the LSTM-based models in most of the defined tasks. Furthermore, all bidirectional models outperformed their unidirectional counterparts. Finally, the addition of a CNN improved the accuracy of lung sound analysis, especially in the CAS detection tasks. ? 2021 Hsu et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
Subjects
abnormal respiratory sound
adult
adventitious sound detection
aged
Article
audio file
benchmarking
bidirectional gated recurrent unit model
bidirectional long short term memory model
breath phase detection
clinical article
continuous adventitious sound label
controlled study
convolutional neural network bidirectional gated recurrent unit model
convolutional neural network bidirectional long short term memory model
convolutional neural network gated recurrent unit model
convolutional neural network long short term memory model
crackle
data base
data processing
diagnostic accuracy
diagnostic test accuracy study
discontinuous adventitious sound label
exhalation label
female
gated recurrent unit model
human
inhalation label
intermethod comparison
long short term memory model
lung sound database
male
model
predictive value
receiver operating characteristic
recurrent neural network
respiratory tract parameters
rhonchus
sensitivity and specificity
sound analysis
sound detection
stridor
wheezing
breathing
diagnosis
disease exacerbation
factual database
lung
middle aged
pathophysiology
very elderly
Adult
Aged
Aged, 80 and over
Benchmarking
COVID-19
Databases, Factual
Disease Progression
Female
Humans
Lung
Male
Middle Aged
Neural Networks, Computer
Respiration
Respiratory Sounds
SDGs

[SDGs]SDG3

Type
journal article

臺大位居世界頂尖大學之列,為永久珍藏及向國際展現本校豐碩的研究成果及學術能量,圖書館整合機構典藏(NTUR)與學術庫(AH)不同功能平台,成為臺大學術典藏NTU scholars。期能整合研究能量、促進交流合作、保存學術產出、推廣研究成果。

To permanently archive and promote researcher profiles and scholarly works, Library integrates the services of “NTU Repository” with “Academic Hub” to form NTU Scholars.

總館學科館員 (Main Library)
醫學圖書館學科館員 (Medical Library)
社會科學院辜振甫紀念圖書館學科館員 (Social Sciences Library)

開放取用是從使用者角度提升資訊取用性的社會運動,應用在學術研究上是透過將研究著作公開供使用者自由取閱,以促進學術傳播及因應期刊訂購費用逐年攀升。同時可加速研究發展、提升研究影響力,NTU Scholars即為本校的開放取用典藏(OA Archive)平台。(點選深入了解OA)

  • 請確認所上傳的全文是原創的內容,若該文件包含部分內容的版權非匯入者所有,或由第三方贊助與合作完成,請確認該版權所有者及第三方同意提供此授權。
    Please represent that the submission is your original work, and that you have the right to grant the rights to upload.
  • 若欲上傳已出版的全文電子檔,可使用Open policy finder網站查詢,以確認出版單位之版權政策。
    Please use Open policy finder to find a summary of permissions that are normally given as part of each publisher's copyright transfer agreement.
  • 網站簡介 (Quickstart Guide)
  • 使用手冊 (Instruction Manual)
  • 線上預約服務 (Booking Service)
  • 方案一:臺灣大學計算機中心帳號登入
    (With C&INC Email Account)
  • 方案二:ORCID帳號登入 (With ORCID)
  • 方案一:定期更新ORCID者,以ID匯入 (Search for identifier (ORCID))
  • 方案二:自行建檔 (Default mode Submission)
  • 方案三:學科館員協助匯入 (Email worklist to subject librarians)

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science