Repository logo
  • English
  • 中文
Log In
Have you forgotten your password?
  1. Home
  2. College of Engineering / 工學院
  3. Chemical Engineering / 化學工程學系
  4. Solid mediator Z-scheme heterojunction photocatalysis for pollutant oxidation in water: Principles and synthesis perspectives
 
  • Details

Solid mediator Z-scheme heterojunction photocatalysis for pollutant oxidation in water: Principles and synthesis perspectives

Journal
Journal of the Taiwan Institute of Chemical Engineers
Journal Volume
125
Pages
88-114
Date Issued
2021
Author(s)
Lai Y.-J
Lee D.-J.
DUU-JONG LEE  
DOI
10.1016/j.jtice.2021.05.049
URI
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85109084318&doi=10.1016%2fj.jtice.2021.05.049&partnerID=40&md5=6841bea788fe1481e304e266a5342e64
https://scholars.lib.ntu.edu.tw/handle/123456789/598156
Abstract
Background: The solid mediator Z-scheme heterojunctions are promising photocatalysts that have narrow band gaps to allow excitation of incorporated electrons under visible lights but with sufficient separation of the yielded electron hole-pairs and without suffering the reduction of their oxidization and reduction powers. Successful synthesis of mediator Z-scheme heterojunction acquires production of constituent semiconductors with desired Fermi levels and close contacts of the semiconductors with sandwiched metal mediator. Methods: This mini-review discussed briefly the principles of photocatalyst and heterojunction photocatalysts, and then the current research and development studies on the way to design and synthesis of Z-scheme heterojunction were summarized. Significant findings: Based on literature results, the perspectives to design and synthesis of a solid mediator Z-scheme for degrading specific pollutant were discussed and outlined. An illustrative example of design and synthesis of a novel Z-scheme photocatalyst, CuFe2O4/Cu/UiO66-NH2, with demonstration of its photodegradation performance of dye rhodamine 6 G, was presented at the end of the review. ? 2021 Taiwan Institute of Chemical Engineers
Subjects
Demonstration
Heterojunction
Mechanism
Photocatalyst
Synthesis
Energy gap
Water pollution
CuFe2O4
Electron hole pairs
Narrow band gap
Oxidization
Pollutant oxidation
Research and development
Rhodamine 6G
Visible light
Heterojunctions
SDGs

[SDGs]SDG6

Type
review

臺大位居世界頂尖大學之列,為永久珍藏及向國際展現本校豐碩的研究成果及學術能量,圖書館整合機構典藏(NTUR)與學術庫(AH)不同功能平台,成為臺大學術典藏NTU scholars。期能整合研究能量、促進交流合作、保存學術產出、推廣研究成果。

To permanently archive and promote researcher profiles and scholarly works, Library integrates the services of “NTU Repository” with “Academic Hub” to form NTU Scholars.

總館學科館員 (Main Library)
醫學圖書館學科館員 (Medical Library)
社會科學院辜振甫紀念圖書館學科館員 (Social Sciences Library)

開放取用是從使用者角度提升資訊取用性的社會運動,應用在學術研究上是透過將研究著作公開供使用者自由取閱,以促進學術傳播及因應期刊訂購費用逐年攀升。同時可加速研究發展、提升研究影響力,NTU Scholars即為本校的開放取用典藏(OA Archive)平台。(點選深入了解OA)

  • 請確認所上傳的全文是原創的內容,若該文件包含部分內容的版權非匯入者所有,或由第三方贊助與合作完成,請確認該版權所有者及第三方同意提供此授權。
    Please represent that the submission is your original work, and that you have the right to grant the rights to upload.
  • 若欲上傳已出版的全文電子檔,可使用Open policy finder網站查詢,以確認出版單位之版權政策。
    Please use Open policy finder to find a summary of permissions that are normally given as part of each publisher's copyright transfer agreement.
  • 網站簡介 (Quickstart Guide)
  • 使用手冊 (Instruction Manual)
  • 線上預約服務 (Booking Service)
  • 方案一:臺灣大學計算機中心帳號登入
    (With C&INC Email Account)
  • 方案二:ORCID帳號登入 (With ORCID)
  • 方案一:定期更新ORCID者,以ID匯入 (Search for identifier (ORCID))
  • 方案二:自行建檔 (Default mode Submission)
  • 方案三:學科館員協助匯入 (Email worklist to subject librarians)

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science