Repository logo
  • English
  • 中文
Log In
Have you forgotten your password?
  1. Home
  2. College of Bioresources and Agriculture / 生物資源暨農學院
  3. Bioenvironmental Systems Engineering / 生物環境系統工程學系
  4. Flood resilience through hybrid deep learning: Advanced forecasting for Taipei's urban drainage system
 
  • Details

Flood resilience through hybrid deep learning: Advanced forecasting for Taipei's urban drainage system

Journal
Journal of Environmental Management
Journal Volume
379
Start Page
124835
ISSN
0301-4797
Date Issued
2025-04
Author(s)
Li-Chiu Chang
Ming-Ting Yang
Fi-John Chang  
DOI
10.1016/j.jenvman.2025.124835
URI
https://www.scopus.com/record/display.uri?eid=2-s2.0-85219694874&origin=resultslist
https://scholars.lib.ntu.edu.tw/handle/123456789/729246
Abstract
The escalating impacts of climate change have intensified extreme rainfall events, placing urban drainage systems under unprecedented pressure and increasing flood risks. Addressing these challenges requires advanced flood mitigation strategies, optimized sewer operations, and responsive disaster management. This study leverages knowledge graphs to integrate diverse data sources, providing a comprehensive perspective on flood dynamics, and applies deep learning models within a Real-Time Urban Drainage Early Warning System to enhance flood management at Taipei City's Zhongshan Pumping Station in Taiwan. We proposed deep learning models, specifically Convolutional Neural Networks combined with Back Propagation Neural Networks (CNN-BP), to make multi-input multi-output multi-step (MIMOMS) forecasts on sewer water levels at intervals from 10 to 40 min (T+1 to T+4) and MIMO forecasts on the pumping station's internal (forebay) and external (river) water levels at intervals from 10 to 60 min (T+1 to T+6). The CNN-BP model exhibited superior forecast accuracy, reaching an R2 (RMSE) of 0.97 (0.08m) at T+1 for sewer water levels and an R2 (RMSE) of 0.99 (0.06m) at T+1 for both internal and external water levels. These results highlight CNN-BP's capability to accurately capture water level trends, ensuring reliable real-time responsiveness, especially during intense and sudden rainfall events. The CNN-BP's high predictive accuracy enables enhanced pump operations, strengthens early warning systems, and fosters intelligent flood control practices crucial for effective environmental management.
Subjects
Convolutional neural networks (CNN)
Long short-term memory (LSTM)
Urban drainage systems
Urban flood mitigation
Water level forecast
SDGs

[SDGs]SDG2

[SDGs]SDG3

[SDGs]SDG6

[SDGs]SDG9

[SDGs]SDG11

[SDGs]SDG13

[SDGs]SDG14

Publisher
Elsevier BV
Description
Article number: 124835
Type
journal article

臺大位居世界頂尖大學之列,為永久珍藏及向國際展現本校豐碩的研究成果及學術能量,圖書館整合機構典藏(NTUR)與學術庫(AH)不同功能平台,成為臺大學術典藏NTU scholars。期能整合研究能量、促進交流合作、保存學術產出、推廣研究成果。

To permanently archive and promote researcher profiles and scholarly works, Library integrates the services of “NTU Repository” with “Academic Hub” to form NTU Scholars.

總館學科館員 (Main Library)
醫學圖書館學科館員 (Medical Library)
社會科學院辜振甫紀念圖書館學科館員 (Social Sciences Library)

開放取用是從使用者角度提升資訊取用性的社會運動,應用在學術研究上是透過將研究著作公開供使用者自由取閱,以促進學術傳播及因應期刊訂購費用逐年攀升。同時可加速研究發展、提升研究影響力,NTU Scholars即為本校的開放取用典藏(OA Archive)平台。(點選深入了解OA)

  • 請確認所上傳的全文是原創的內容,若該文件包含部分內容的版權非匯入者所有,或由第三方贊助與合作完成,請確認該版權所有者及第三方同意提供此授權。
    Please represent that the submission is your original work, and that you have the right to grant the rights to upload.
  • 若欲上傳已出版的全文電子檔,可使用Open policy finder網站查詢,以確認出版單位之版權政策。
    Please use Open policy finder to find a summary of permissions that are normally given as part of each publisher's copyright transfer agreement.
  • 網站簡介 (Quickstart Guide)
  • 使用手冊 (Instruction Manual)
  • 線上預約服務 (Booking Service)
  • 方案一:臺灣大學計算機中心帳號登入
    (With C&INC Email Account)
  • 方案二:ORCID帳號登入 (With ORCID)
  • 方案一:定期更新ORCID者,以ID匯入 (Search for identifier (ORCID))
  • 方案二:自行建檔 (Default mode Submission)
  • 方案三:學科館員協助匯入 (Email worklist to subject librarians)

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science