Repository logo
  • English
  • 中文
Log In
Have you forgotten your password?
  1. Home
  2. College of Management / 管理學院
  3. International Business / 國際企業學系
  4. A Study on Recommendation Systems in Retail Channel
 
  • Details

A Study on Recommendation Systems in Retail Channel

Date Issued
2013
Date
2013
Author(s)
Kuo, Shu-Chin
URI
http://ntur.lib.ntu.edu.tw//handle/246246/262670
Abstract
With the advent of technology, it is easier for corporations to collect customer data and to develop virtual channel or online stores, which changed tremendously the way people consume today. Therefore, with computing technology, database marketing could help corporations to conduct efficient marketing strategies, to predict future trend and customer behavior, and to actively contact with target customers. However, vigorous virtual channel and online stores tread the neck of physical channel or physical retailers, keeping them barely survive today. Therefore, it is critical for physical channel and retailers to implement database marketing against low cost virtual channel. Database marketing use historical customers’ consuming data to apply one-on-one marketing strategies, attempting to reinforce relationship with customers and customers’ loyalty. The most prevalent execution of database marketing today is the recommendation system. Recommendation system is a platform to suggest customers to buy the products and the products are computed by the system and categorized in highest rating and preference for individual customer. While customers are heterogeneous, via implementing recommendation system, physical retailers could exactly predict the need of customers, control the inventory accurately and gain more bargaining power with branding manufacturers. This thesis used customer data of domestic noted supermarket and applied Hierarchical Bayesian Probit Model to build up recommendation system model. In this system model, each customer has his or her own preference to different brand (in the similar product category). In this way, each customer will receive personal shop suggestion for the next buying. Theoretically, personal suggestions are better than identical ones. The objective of this thesis is try to figure out whether the success hit rate of recommendation system via individual HB Probit model is more higher than the rate of traditional aggregate recommendation model.
Subjects
資料庫行銷
實體通路
一對一行銷
層級普羅比模式
顧客關係管理
Type
thesis
File(s)
Loading...
Thumbnail Image
Name

ntu-102-R00724080-1.pdf

Size

23.32 KB

Format

Adobe PDF

Checksum

(MD5):83a67076e395099ffd933f8ff9ea1d13

臺大位居世界頂尖大學之列,為永久珍藏及向國際展現本校豐碩的研究成果及學術能量,圖書館整合機構典藏(NTUR)與學術庫(AH)不同功能平台,成為臺大學術典藏NTU scholars。期能整合研究能量、促進交流合作、保存學術產出、推廣研究成果。

To permanently archive and promote researcher profiles and scholarly works, Library integrates the services of “NTU Repository” with “Academic Hub” to form NTU Scholars.

總館學科館員 (Main Library)
醫學圖書館學科館員 (Medical Library)
社會科學院辜振甫紀念圖書館學科館員 (Social Sciences Library)

開放取用是從使用者角度提升資訊取用性的社會運動,應用在學術研究上是透過將研究著作公開供使用者自由取閱,以促進學術傳播及因應期刊訂購費用逐年攀升。同時可加速研究發展、提升研究影響力,NTU Scholars即為本校的開放取用典藏(OA Archive)平台。(點選深入了解OA)

  • 請確認所上傳的全文是原創的內容,若該文件包含部分內容的版權非匯入者所有,或由第三方贊助與合作完成,請確認該版權所有者及第三方同意提供此授權。
    Please represent that the submission is your original work, and that you have the right to grant the rights to upload.
  • 若欲上傳已出版的全文電子檔,可使用Open policy finder網站查詢,以確認出版單位之版權政策。
    Please use Open policy finder to find a summary of permissions that are normally given as part of each publisher's copyright transfer agreement.
  • 網站簡介 (Quickstart Guide)
  • 使用手冊 (Instruction Manual)
  • 線上預約服務 (Booking Service)
  • 方案一:臺灣大學計算機中心帳號登入
    (With C&INC Email Account)
  • 方案二:ORCID帳號登入 (With ORCID)
  • 方案一:定期更新ORCID者,以ID匯入 (Search for identifier (ORCID))
  • 方案二:自行建檔 (Default mode Submission)
  • 方案三:學科館員協助匯入 (Email worklist to subject librarians)

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science