Repository logo
  • English
  • 中文
Log In
Have you forgotten your password?
  1. Home
  2. College of Management / 管理學院
  3. Information Management / 資訊管理學系
  4. Efficient Sequential Pattern Mining by Breadth-First Approach
 
  • Details

Efficient Sequential Pattern Mining by Breadth-First Approach

Date Issued
2004
Date
2004
Author(s)
Chang, Keng-Yuan
DOI
en-US
URI
http://ntur.lib.ntu.edu.tw//handle/246246/54397
Abstract
自從GSP演算法提出之後,許多相關的演算法被提出來且大多專注在找尋所有序列樣式。CloSpan演算法首先提出找尋封閉集合。封閉集合比全集合更精簡有效,且具有相同的表達能力。因此,CloSpan就以PrefixSpan演算法為基礎,加上兩個其稱為backward sub-pattern與backward super-pattern的刪減技巧,有效地找出封閉集合。 因此我們提出一個新的演算法以找尋封閉集合。然而不同於之前演算法多採深度優先的策略,我們的演算法是屬於廣度優先的方法。另外,之前提出的演算法鮮有明顯地利用項目的順序關係(item ordering)來強化找尋樣式的效率。我們利用定位資料串列(positional data list)來保存項目的順序關係。我們利用這些資料來幫助樣式(pattern)的產生,並依此提出了兩種刪減技巧分別為backward super-pattern condition與same positional data condition。為了確保儲存最後結果的柵格(lattice)的正確性與簡潔,我們另外還針對一些特殊情況做處理。由實驗的結果顯示,我們的演算法相較於CloSpan在中大型的資料庫與小的支持度(support)的狀況下都有較優良的表現。
Since the GSP algorithm is proposed to mine sequential patterns in sequence databases, many methods have been proposed and mostly focused on mining the complete set of frequent patterns. The CloSpan algorithm first suggested that the closed set of sequential patterns is more compact and has the same expressive power with respect to the full set. Based on the PrefixSpan algorithm, CloSpan added two pruning techniques, backward sub-pattern and backward super-pattern, to efficiently mine the closed set. Therefore, in this thesis, we propose a new sequential pattern mining algorithm to mine closed sequences. However, instead of depth-first searching used in many previous methods, we adopt a breadth-first approach. Besides, previous methods seldom utilize the property of item ordering to enhance efficiency. We used a list of positional data to reserve the information of item ordering. By using these positional data, we developed two main pruning techniques, backward super-pattern condition and same positional data condition. To ensure correct and compact resulted lattice, we also manipulated some special conditions. From the experimental results, our algorithm outperforms CloSpan in the cases of moderately large datasets and low support threshold.
Subjects
序列性規則
封閉集合
資料探勘
sequential pattern
closed set
data mining
Type
other
File(s)
Loading...
Thumbnail Image
Name

ntu-93-R91725010-1.pdf

Size

23.31 KB

Format

Adobe PDF

Checksum

(MD5):d7d4a1094247ecff33922b9882f940b4

臺大位居世界頂尖大學之列,為永久珍藏及向國際展現本校豐碩的研究成果及學術能量,圖書館整合機構典藏(NTUR)與學術庫(AH)不同功能平台,成為臺大學術典藏NTU scholars。期能整合研究能量、促進交流合作、保存學術產出、推廣研究成果。

To permanently archive and promote researcher profiles and scholarly works, Library integrates the services of “NTU Repository” with “Academic Hub” to form NTU Scholars.

總館學科館員 (Main Library)
醫學圖書館學科館員 (Medical Library)
社會科學院辜振甫紀念圖書館學科館員 (Social Sciences Library)

開放取用是從使用者角度提升資訊取用性的社會運動,應用在學術研究上是透過將研究著作公開供使用者自由取閱,以促進學術傳播及因應期刊訂購費用逐年攀升。同時可加速研究發展、提升研究影響力,NTU Scholars即為本校的開放取用典藏(OA Archive)平台。(點選深入了解OA)

  • 請確認所上傳的全文是原創的內容,若該文件包含部分內容的版權非匯入者所有,或由第三方贊助與合作完成,請確認該版權所有者及第三方同意提供此授權。
    Please represent that the submission is your original work, and that you have the right to grant the rights to upload.
  • 若欲上傳已出版的全文電子檔,可使用Open policy finder網站查詢,以確認出版單位之版權政策。
    Please use Open policy finder to find a summary of permissions that are normally given as part of each publisher's copyright transfer agreement.
  • 網站簡介 (Quickstart Guide)
  • 使用手冊 (Instruction Manual)
  • 線上預約服務 (Booking Service)
  • 方案一:臺灣大學計算機中心帳號登入
    (With C&INC Email Account)
  • 方案二:ORCID帳號登入 (With ORCID)
  • 方案一:定期更新ORCID者,以ID匯入 (Search for identifier (ORCID))
  • 方案二:自行建檔 (Default mode Submission)
  • 方案三:學科館員協助匯入 (Email worklist to subject librarians)

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science