Repository logo
  • English
  • 中文
Log In
Have you forgotten your password?
  1. Home
  2. College of Electrical Engineering and Computer Science / 電機資訊學院
  3. Computer Science and Information Engineering / 資訊工程學系
  4. Video search reranking through random walk over document-level context graph
 
  • Details

Video search reranking through random walk over document-level context graph

Journal
ACM International Multimedia Conference and Exhibition
Pages
971-980
ISBN
9781595937025
Date Issued
2007
Author(s)
Hsu W.H.  
Kennedy L.S.
WINSTON HSU  
DOI
10.1145/1291233.1291446
URI
https://scholars.lib.ntu.edu.tw/handle/123456789/412925
Abstract
Multimedia search over distributed sources often result in recurrent images or videos which are manifested beyond the textual modality. To exploit such contextual patterns and keep the simplicity of the keyword-based search, we propose novel reranking methods to leverage the recurrent patterns to improve the initial text search results. The approach, context reranking, is formulated as a random walk problem along the context graph, where video stories are nodes and the edges between them are weighted by multimodal contextual similarities. The random walk is biased with the preference towards stories with higher initial text search scores - a principled way to consider both initial text search results and their implicit contextual relationships. When evaluated on TRECVID 2005 video benchmark, the proposed approach can improve retrieval on the average up to 32% relative to the baseline text search method in terms of story-level Mean Average Precision. In the people-related queries, which usually have recurrent coverage across news sources, we can have up to 40% relative improvement. Most of all, the proposed method does not require any additional input from users (e.g., example images), or complex search models for special queries (e.g., named person search). Copyright 2007 ACM.
Subjects
Multimodal fusion; Power method; Video search
Type
conference paper

臺大位居世界頂尖大學之列,為永久珍藏及向國際展現本校豐碩的研究成果及學術能量,圖書館整合機構典藏(NTUR)與學術庫(AH)不同功能平台,成為臺大學術典藏NTU scholars。期能整合研究能量、促進交流合作、保存學術產出、推廣研究成果。

To permanently archive and promote researcher profiles and scholarly works, Library integrates the services of “NTU Repository” with “Academic Hub” to form NTU Scholars.

總館學科館員 (Main Library)
醫學圖書館學科館員 (Medical Library)
社會科學院辜振甫紀念圖書館學科館員 (Social Sciences Library)

開放取用是從使用者角度提升資訊取用性的社會運動,應用在學術研究上是透過將研究著作公開供使用者自由取閱,以促進學術傳播及因應期刊訂購費用逐年攀升。同時可加速研究發展、提升研究影響力,NTU Scholars即為本校的開放取用典藏(OA Archive)平台。(點選深入了解OA)

  • 請確認所上傳的全文是原創的內容,若該文件包含部分內容的版權非匯入者所有,或由第三方贊助與合作完成,請確認該版權所有者及第三方同意提供此授權。
    Please represent that the submission is your original work, and that you have the right to grant the rights to upload.
  • 若欲上傳已出版的全文電子檔,可使用Open policy finder網站查詢,以確認出版單位之版權政策。
    Please use Open policy finder to find a summary of permissions that are normally given as part of each publisher's copyright transfer agreement.
  • 網站簡介 (Quickstart Guide)
  • 使用手冊 (Instruction Manual)
  • 線上預約服務 (Booking Service)
  • 方案一:臺灣大學計算機中心帳號登入
    (With C&INC Email Account)
  • 方案二:ORCID帳號登入 (With ORCID)
  • 方案一:定期更新ORCID者,以ID匯入 (Search for identifier (ORCID))
  • 方案二:自行建檔 (Default mode Submission)
  • 方案三:學科館員協助匯入 (Email worklist to subject librarians)

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science