Repository logo
  • English
  • 中文
Log In
Have you forgotten your password?
  1. Home
  2. College of Engineering / 工學院
  3. Environmental Engineering / 環境工程學研究所
  4. Predicting microbial species in a river based on physicochemical properties by bio-inspired metaheuristic optimized machine learning
 
  • Details

Predicting microbial species in a river based on physicochemical properties by bio-inspired metaheuristic optimized machine learning

Journal
Sustainability (Switzerland)
Journal Volume
11
Journal Issue
24
Date Issued
2019
Author(s)
Chou, J.-S.
Yu, C.-P.
Truong, D.-N.
Susilo, B.
Hu, A.
Sun, Q.
CHANG-PING YU  
DOI
10.3390/su11246889
URI
https://www.scopus.com/inward/record.url?eid=2-s2.0-85079428237&partnerID=40&md5=ec92724c1f9341515dce1d6289ea378a
https://scholars.lib.ntu.edu.tw/handle/123456789/546771
Abstract
The main goal of the analysis of microbial ecology is to understand the relationship between Earth's microbial community and their functions in the environment. This paper presents a proof-of-concept research to develop a bioclimatic modeling approach that leverages artificial intelligence techniques to identify the microbial species in a river as a function of physicochemical parameters. Feature reduction and selection are both utilized in the data preprocessing owing to the scarce of available data points collected and missing values of physicochemical attributes from a river in Southeast China. A bio-inspired metaheuristic optimized machine learner, which supports the adjustment to the multiple-output prediction form, is used in bioclimatic modeling. The accuracy of prediction and applicability of the model can help microbiologists and ecologists in quantifying the predicted microbial species for further experimental planning with minimal expenditure, which is become one of the most serious issues when facing dramatic changes of environmental conditions caused by global warming. This work demonstrates a neoteric approach for potential use in predicting preliminary microbial structures in the environment. © 2019 The Author(s).
Subjects
Bio-inspired metaheuristics; Bioclimatic modeling; Data mining; Machine learning; Microbial community; Multi-output prediction; Optimization; Physicochemical properties; River environment
SDGs

[SDGs]SDG13

Other Subjects
artificial intelligence; bioclimatology; climate modeling; community structure; data mining; environmental conditions; machine learning; microbial community; microbial ecology; optimization; physicochemical property; prediction; China
Type
journal article

臺大位居世界頂尖大學之列,為永久珍藏及向國際展現本校豐碩的研究成果及學術能量,圖書館整合機構典藏(NTUR)與學術庫(AH)不同功能平台,成為臺大學術典藏NTU scholars。期能整合研究能量、促進交流合作、保存學術產出、推廣研究成果。

To permanently archive and promote researcher profiles and scholarly works, Library integrates the services of “NTU Repository” with “Academic Hub” to form NTU Scholars.

總館學科館員 (Main Library)
醫學圖書館學科館員 (Medical Library)
社會科學院辜振甫紀念圖書館學科館員 (Social Sciences Library)

開放取用是從使用者角度提升資訊取用性的社會運動,應用在學術研究上是透過將研究著作公開供使用者自由取閱,以促進學術傳播及因應期刊訂購費用逐年攀升。同時可加速研究發展、提升研究影響力,NTU Scholars即為本校的開放取用典藏(OA Archive)平台。(點選深入了解OA)

  • 請確認所上傳的全文是原創的內容,若該文件包含部分內容的版權非匯入者所有,或由第三方贊助與合作完成,請確認該版權所有者及第三方同意提供此授權。
    Please represent that the submission is your original work, and that you have the right to grant the rights to upload.
  • 若欲上傳已出版的全文電子檔,可使用Open policy finder網站查詢,以確認出版單位之版權政策。
    Please use Open policy finder to find a summary of permissions that are normally given as part of each publisher's copyright transfer agreement.
  • 網站簡介 (Quickstart Guide)
  • 使用手冊 (Instruction Manual)
  • 線上預約服務 (Booking Service)
  • 方案一:臺灣大學計算機中心帳號登入
    (With C&INC Email Account)
  • 方案二:ORCID帳號登入 (With ORCID)
  • 方案一:定期更新ORCID者,以ID匯入 (Search for identifier (ORCID))
  • 方案二:自行建檔 (Default mode Submission)
  • 方案三:學科館員協助匯入 (Email worklist to subject librarians)

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science