Repository logo
  • English
  • 中文
Log In
Have you forgotten your password?
  1. Home
  2. College of Science / 理學院
  3. Mathematics / 數學系
  4. A Survey on Toroidal Embeddings
 
  • Details

A Survey on Toroidal Embeddings

Date Issued
2014
Date
2014
Author(s)
Huang, Shing-Yeong
URI
http://ntur.lib.ntu.edu.tw//handle/246246/264023
Abstract
In this thesis, we will assume basic facts about toric varieties and commutative algebra, and give a survey of [3], chapter II, with detailed proofs of all the theorems. First of all, the idea of equivariant torus embeddings will be generalized to that of so-called toroidal embeddings, which means intuitively "locally similar to some torus embeddings". More precisely, a toroidal embedding is a smooth variety $X$ containing a smooth open subset $U$, such that for every closed point $x in X$, there exists an $T$-equivariant embedding $X_{sigma}$ of some torus $T$, a closed point $t in X_{sigma}$, and an $k$-local algebra isomorphism:[ widehat{mathcal{O}}_{X,x} simeq widehat{mathcal{O}}_{X_{sigma},t}] and the ideal in $widehat{mathcal{O}}_{X,x} $ generated by the ideal of $Xsetminus U$ corresponds to the ideal in $widehat{mathcal{O}}_{X_{sigma},t}$ generated by the ideal of $X_{sigma}setminus T$. Next, we can stratify a toroidal embedding into different components which generalize the idea of orbits. And then we can analyze a toroidal embedding as toric cases and obtain many similar results. The main goal of this generalization is to apply those developed theorems to reduce the proof of semi-stable reduction theorem to a specific combinatorial construction. Section 1 gives the definition of toroidal embeddings and the stratification of a toroidal embedding, and then consider the two crucial parts: $M^Y$ and $S^U({ m star}! Y)$ for a stratum $Y$ (Lemma 1.1.7 and Definition 1.1.11), which generalize the idea of $T$-invariant Cartier divisors and 1-parameter subgroup of a $T$-equivariant embedding, and we can also define a cone $sigma^Y$ in some euclidean space relative to the stratum $Y$. At the end of this section, we show that a toroidal embedding can be associated to a "polyhedral complex", which is a collection of cones patched together similar to a fan. Section 2 introduces "canonical morphism" to a fixed toroidal embedding, and shows that this is equivalent to give a sub-polyhedral complex (Theorem 1.2.2). With this theorem, we then generalize theorems of toric varieties by using polyhedral complices instead of fans, including the existence of morphisms, non-singularity of such varieties and blowing-ups (Theorem 1.2.8, Theorem 1.2.9 and Theorem 1.2.16), and eventually show that there exists a non-singular blowing-up. Section 3 provides concrete methods that we can convert the semi-stable reduction theorem to the construction of some toroidal embeddings, and then use the theorem in cite{Tor}, chapter III to show the semi-stable reduction theorem.
Subjects
環面嵌入
Type
thesis
File(s)
Loading...
Thumbnail Image
Name

ntu-103-R00221012-1.pdf

Size

23.54 KB

Format

Adobe PDF

Checksum

(MD5):af2256eae1fc2f15f00f9b6cf71125ee

臺大位居世界頂尖大學之列,為永久珍藏及向國際展現本校豐碩的研究成果及學術能量,圖書館整合機構典藏(NTUR)與學術庫(AH)不同功能平台,成為臺大學術典藏NTU scholars。期能整合研究能量、促進交流合作、保存學術產出、推廣研究成果。

To permanently archive and promote researcher profiles and scholarly works, Library integrates the services of “NTU Repository” with “Academic Hub” to form NTU Scholars.

總館學科館員 (Main Library)
醫學圖書館學科館員 (Medical Library)
社會科學院辜振甫紀念圖書館學科館員 (Social Sciences Library)

開放取用是從使用者角度提升資訊取用性的社會運動,應用在學術研究上是透過將研究著作公開供使用者自由取閱,以促進學術傳播及因應期刊訂購費用逐年攀升。同時可加速研究發展、提升研究影響力,NTU Scholars即為本校的開放取用典藏(OA Archive)平台。(點選深入了解OA)

  • 請確認所上傳的全文是原創的內容,若該文件包含部分內容的版權非匯入者所有,或由第三方贊助與合作完成,請確認該版權所有者及第三方同意提供此授權。
    Please represent that the submission is your original work, and that you have the right to grant the rights to upload.
  • 若欲上傳已出版的全文電子檔,可使用Open policy finder網站查詢,以確認出版單位之版權政策。
    Please use Open policy finder to find a summary of permissions that are normally given as part of each publisher's copyright transfer agreement.
  • 網站簡介 (Quickstart Guide)
  • 使用手冊 (Instruction Manual)
  • 線上預約服務 (Booking Service)
  • 方案一:臺灣大學計算機中心帳號登入
    (With C&INC Email Account)
  • 方案二:ORCID帳號登入 (With ORCID)
  • 方案一:定期更新ORCID者,以ID匯入 (Search for identifier (ORCID))
  • 方案二:自行建檔 (Default mode Submission)
  • 方案三:學科館員協助匯入 (Email worklist to subject librarians)

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science