Probabilistic topography of human corpus callosum using cytoarchitectural parcellation and high angular resolution diffusion imaging tractography.
Journal
Human Brain Mapping
Journal Volume
30
Journal Issue
10
Pages
3172-3187
Date Issued
2009-10
Author(s)
Abstract
The function of the corpus callosum (CC) is to distribute perceptual, motor, cognitive, learned, and voluntary information between the two hemispheres of the brain. Accurate parcellation of the CC according to fiber composition and fiber connection is of upmost important. In this work, populationbased probabilistic connection topographies of the CC, in the standard Montreal Neurological Institute (MNI) space, are estimated by incorporating anatomical cytoarchitectural parcellation with high angular resolution diffusion imaging (HARDI) tractography. First, callosal fibers are extracted using multiple fiber assignment by continuous tracking algorithm based on q-ball imaging (QBI), on 12 healthy and young subjects. Then, the fiber tracts are aligned in the standard MNI coordinate system based on a tract-based transformation scheme. Next, twenty-eight Brodmann's areas on the surface of cortical cortex are registered to the MNI space to parcellate the aligned callosal fibers. Finally, the population-based topological subdivisions of the midsagittal CC to each cortical target are then mapped. And the resulting subdivisions of the CC that connect to the frontal and somatosensory associated cortex are also showed. To our knowledge, it is the first topographic subdivisions of the CC done using HARDI tractography and cytoarchitectonic information. In conclusion, this sophisticated topography of the CC may serve as a landmark to further understand the correlations between the CC, brain intercommunication, and functional cytoarchitectures. ? 2009 Wiley-Liss, Inc.
Subjects
Brodmann's areas; Corpus callosum; High angular resolution diffusion imaging; Parcellation; Tractography
SDGs
Other Subjects
adult; algorithm; article; brain cortex; brain function; brain mapping; corpus callosum; cytoarchitecture; diffusion weighted imaging; female; frontal cortex; human; human experiment; imaging system; male; nerve fiber; nerve tract; neuroanatomy; neuroimaging; normal human; priority journal; somatosensory cortex; Adult; Brain Mapping; Corpus Callosum; Diffusion Magnetic Resonance Imaging; Female; Humans; Imaging, Three-Dimensional; Male; Nerve Fibers, Myelinated; Neural Pathways; Probability; Young Adult
Type
journal article
