Repository logo
  • English
  • 中文
Log In
Have you forgotten your password?
  1. Home
  2. College of Life Science / 生命科學院
  3. Biochemical Science and Technology / 生化科技學系
  4. Chitosan to connect biology to electronics: Fabricating the bio-device interface and communicating across this interface
 
  • Details

Chitosan to connect biology to electronics: Fabricating the bio-device interface and communicating across this interface

Journal
Polymers
Journal Volume
7
Journal Issue
1
Pages
1-46
Date Issued
2015
Author(s)
Kim, E.
HSUAN-CHEN WU et al.  
DOI
10.3390/polym7010001
URI
http://www.scopus.com/inward/record.url?eid=2-s2.0-84961291385&partnerID=MN8TOARS
http://scholars.lib.ntu.edu.tw/handle/123456789/394461
https://www.scopus.com/inward/record.uri?eid=2-s2.0-84961291385&doi=10.3390%2fpolym7010001&partnerID=40&md5=19225b8088445d98fd9f51e6c60fa596
Abstract
Individually, advances in microelectronics and biology transformed the way we live our lives. However, there remain few examples in which biology and electronics have been interfaced to create synergistic capabilities. We believe there are two major challenges to the integration of biological components into microelectronic systems: (i) assembly of the biological components at an electrode address, and (ii) communication between the assembled biological components and the underlying electrode. Chitosan possesses a unique combination of properties to meet these challenges and serve as an effective bio-device interface material. For assembly, chitosan's pH-responsive film-forming properties allow it to "recognize" electrode-imposed signals and respond by self-assembling as a stable hydrogel film through a cathodic electrodeposition mechanism. A separate anodic electrodeposition mechanism was recently reported and this also allows chitosan hydrogel films to be assembled at an electrode address. Protein-based biofunctionality can be conferred to electrodeposited films through a variety of physical, chemical and biological methods. For communication, we are investigating redox-active catechol-modified chitosan films as an interface to bridge redox-based communication between biology and an electrode. Despite significant progress over the last decade, many questions still remain which warrants even deeper study of chitosan's structure, properties, and functions. © 2014 by the authors.
Subjects
Bioelectronics; Biofabrication; Biosensing; Catechol; Chitosan; Electrochemistry; Electrodeposition; Redox-activity; Redox-capacitor; Tyrosinase
Other Subjects
Biology; Chitin; Chitosan; Electrochemistry; Electrodeposition; Electrodes; Hydrogels; Microelectronics; Phenols; Redox reactions; Bioelectronics; Biofabrication; Biosensing; Catechol; Redox activity; Redox capacitor; Tyrosinase; Interfaces (materials)
Type
review

臺大位居世界頂尖大學之列,為永久珍藏及向國際展現本校豐碩的研究成果及學術能量,圖書館整合機構典藏(NTUR)與學術庫(AH)不同功能平台,成為臺大學術典藏NTU scholars。期能整合研究能量、促進交流合作、保存學術產出、推廣研究成果。

To permanently archive and promote researcher profiles and scholarly works, Library integrates the services of “NTU Repository” with “Academic Hub” to form NTU Scholars.

總館學科館員 (Main Library)
醫學圖書館學科館員 (Medical Library)
社會科學院辜振甫紀念圖書館學科館員 (Social Sciences Library)

開放取用是從使用者角度提升資訊取用性的社會運動,應用在學術研究上是透過將研究著作公開供使用者自由取閱,以促進學術傳播及因應期刊訂購費用逐年攀升。同時可加速研究發展、提升研究影響力,NTU Scholars即為本校的開放取用典藏(OA Archive)平台。(點選深入了解OA)

  • 請確認所上傳的全文是原創的內容,若該文件包含部分內容的版權非匯入者所有,或由第三方贊助與合作完成,請確認該版權所有者及第三方同意提供此授權。
    Please represent that the submission is your original work, and that you have the right to grant the rights to upload.
  • 若欲上傳已出版的全文電子檔,可使用Open policy finder網站查詢,以確認出版單位之版權政策。
    Please use Open policy finder to find a summary of permissions that are normally given as part of each publisher's copyright transfer agreement.
  • 網站簡介 (Quickstart Guide)
  • 使用手冊 (Instruction Manual)
  • 線上預約服務 (Booking Service)
  • 方案一:臺灣大學計算機中心帳號登入
    (With C&INC Email Account)
  • 方案二:ORCID帳號登入 (With ORCID)
  • 方案一:定期更新ORCID者,以ID匯入 (Search for identifier (ORCID))
  • 方案二:自行建檔 (Default mode Submission)
  • 方案三:學科館員協助匯入 (Email worklist to subject librarians)

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science