Supersensitive visual pressure sensor based on the exciton luminescence of a perovskite material
Journal
Materials Horizons
ISSN
2051-6347
2051-6355
Date Issued
2024
Author(s)
Marcin Runowski
Przemysław Woźny
Kevin Soler-Carracedo
Agata Lazarowska
Mikołaj Kamiński
Natalia Majewska
Alfonso Muñoz
Jan Moszczyński
Szymon Sobczak
Kashyap Dave
Wen-Tse Huang
Sebastian Mahlik
Abstract
Accurate, rapid, and remote detection of pressure, one of the fundamental physical parameters, is vital for scientific, industrial, and daily life purposes. However, due to the limited sensitivity of luminescent manometers, the optical pressure monitoring has been applied mainly in scientific studies. Here, we developed the first supersensitive optical pressure sensor based on the exciton-type luminescence of the Bi3+-doped, double perovskite material Cs2Ag0.6Na0.4InCl6. The designed luminescent manometer exhibits an extremely high sensitivity, i.e. dλ/dp = 112 nm GPa−1. It also allows multi-parameter sensing, using both blue-shift and rarely observed band narrowing with pressure. Importantly, this material has small temperature dependence for the manometric parameter used, i.e. spectral shift, allowing detection under extreme pressure and temperature conditions. The developed sensor operates in the visible range, and its emission shifts from orange to blue with pressure. This approach allowed us to demonstrate the real-world application of this sensor in detecting small changes in pressure with a designed uniaxial pressure device, with unprecedented resolution of the order of a few bars, demonstrating the technological potential of this sensor for remote, online monitoring of cracks and strains in heavy construction facilities.
Publisher
Royal Society of Chemistry (RSC)
Type
journal article