Repository logo
  • English
  • 中文
Log In
Have you forgotten your password?
  1. Home
  2. College of Electrical Engineering and Computer Science / 電機資訊學院
  3. Computer Science and Information Engineering / 資訊工程學系
  4. How Incompletely Segmented Information Affects Multi-Object Tracking and Segmentation (MOTS)
 
  • Details

How Incompletely Segmented Information Affects Multi-Object Tracking and Segmentation (MOTS)

Journal
Proceedings - International Conference on Image Processing, ICIP
Journal Volume
2020-October
Pages
2086-2090
Date Issued
2020
Author(s)
Chou Y.-S
Wang C.-Y
SHOU-DE LIN  
Liao H.-Y.M.
DOI
10.1109/ICIP40778.2020.9190802
URI
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85098669794&doi=10.1109%2fICIP40778.2020.9190802&partnerID=40&md5=43eb83516d7b49991e7ba9687b2a9f47
https://scholars.lib.ntu.edu.tw/handle/123456789/581451
Abstract
In recent years, deep learning has made dramatic advances in computer vision field, especially in improving the performance of object detection as well as instance semantic segmentation. Still, multi-object tracking (MOT) remains a very challenging issue. Even in state-of-the-art deep learning-based object detectors, a preferred paradigm for MOT: tracking-by-detection, can only slightly improve the tracking performance. Pixel-level information is considered more precise and useful for tracking performance improvement than using conventional information, such as foreground or background content in a bounding box. However, the performance of current state-of-the-art models for automatically annotating pixel-level information is still far from the expectation of human beings. Therefore, we shall explore how multi-object tracking and segmentation (MOTS) is affected when the information obtained after applying instance semantic segmentation is incomplete. We propose a mask-guided two-streamed augmentation learning (MGTSAL) algorithm, which can be applied to TrackR-CNN to alleviate significant drop of MOTS performance when encountering incompletely segmented information. We evaluate the proposed approach on MOTS KITTI dataset, and our approach outperforms the baseline model TrackR-CNN in all our experimental settings. The promising experimental results and ablation study validate the effectiveness of the proposed approach. ? 2020 IEEE.
Subjects
Deep learning; Image segmentation; Object detection; Object recognition; Pixels; Semantics; Baseline models; Bounding box; Multi-object tracking; Object detectors; Semantic segmentation; State of the art; Tracking by detections; Tracking performance; Object tracking
Type
conference paper

臺大位居世界頂尖大學之列,為永久珍藏及向國際展現本校豐碩的研究成果及學術能量,圖書館整合機構典藏(NTUR)與學術庫(AH)不同功能平台,成為臺大學術典藏NTU scholars。期能整合研究能量、促進交流合作、保存學術產出、推廣研究成果。

To permanently archive and promote researcher profiles and scholarly works, Library integrates the services of “NTU Repository” with “Academic Hub” to form NTU Scholars.

總館學科館員 (Main Library)
醫學圖書館學科館員 (Medical Library)
社會科學院辜振甫紀念圖書館學科館員 (Social Sciences Library)

開放取用是從使用者角度提升資訊取用性的社會運動,應用在學術研究上是透過將研究著作公開供使用者自由取閱,以促進學術傳播及因應期刊訂購費用逐年攀升。同時可加速研究發展、提升研究影響力,NTU Scholars即為本校的開放取用典藏(OA Archive)平台。(點選深入了解OA)

  • 請確認所上傳的全文是原創的內容,若該文件包含部分內容的版權非匯入者所有,或由第三方贊助與合作完成,請確認該版權所有者及第三方同意提供此授權。
    Please represent that the submission is your original work, and that you have the right to grant the rights to upload.
  • 若欲上傳已出版的全文電子檔,可使用Open policy finder網站查詢,以確認出版單位之版權政策。
    Please use Open policy finder to find a summary of permissions that are normally given as part of each publisher's copyright transfer agreement.
  • 網站簡介 (Quickstart Guide)
  • 使用手冊 (Instruction Manual)
  • 線上預約服務 (Booking Service)
  • 方案一:臺灣大學計算機中心帳號登入
    (With C&INC Email Account)
  • 方案二:ORCID帳號登入 (With ORCID)
  • 方案一:定期更新ORCID者,以ID匯入 (Search for identifier (ORCID))
  • 方案二:自行建檔 (Default mode Submission)
  • 方案三:學科館員協助匯入 (Email worklist to subject librarians)

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science