Repository logo
  • English
  • 中文
Log In
Have you forgotten your password?
  1. Home
  2. College of Bioresources and Agriculture / 生物資源暨農學院
  3. Agronomy / 農藝學系
  4. Relative Abundance of Ammonia Oxidizing Archaea and Bacteria Influences Soil Nitrification Responses to Temperature
 
  • Details

Relative Abundance of Ammonia Oxidizing Archaea and Bacteria Influences Soil Nitrification Responses to Temperature

Journal
Microorganisms
Journal Volume
7
Journal Issue
11
Pages
1-14
Date Issued
2019-11-04
Author(s)
Mukhtar, Hussnain
YU-PIN LIN  
Lin, Chiao-Ming
LIN, YANN-RONG  
DOI
10.3390/microorganisms7110526
URI
https://scholars.lib.ntu.edu.tw/handle/123456789/478769
URL
https://api.elsevier.com/content/abstract/scopus_id/85074644498
Abstract
Ammonia oxidizing archaea (AOA) and bacteria (AOB) are thought to contribute differently to soil nitrification, yet the extent to which their relative abundances influence the temperature response of nitrification is poorly understood. Here, we investigated the impact of different AOA to AOB ratios on soil nitrification potential (NP) across a temperature gradient from 4 °C to 40 °C in twenty different organic and inorganic fertilized soils. The temperature responses of different relative abundance of ammonia oxidizers for nitrification were modeled using square rate theory (SQRT) and macromolecular rate theory (MMRT) models. We found that the proportional nitrification rates at different temperatures varied among AOA to AOB ratios. Predicted by both models, an optimum temperature (Topt) for nitrification in AOA dominated soils was significantly higher than for soils where AOA and AOB abundances are within the same order of magnitude. Moreover, the change in heat capacity ( Δ C P ‡ ) associated with the temperature dependence of nitrification was positively correlated with Topt and significantly varied among the AOA to AOB ratios. The temperature ranges for NP decreased with increasing AOA abundance for both organic and inorganic fertilized soils. These results challenge the widely accepted approach of comparing NP rates in different soils at a fixed temperature. We conclude that a shift in AOA to AOB ratio in soils exhibits distinguished temperature-dependent characteristics that have an important impact on nitrification responses across the temperature gradient. The proposed approach benefits the accurate discernment of the true contribution of fertilized soils to nitrification for improvement of nitrogen management.
Subjects
Ammonia oxidizers; MMRT; nitrification; soil; temperature
Publisher
MDPI
Type
journal article
File(s)
Loading...
Thumbnail Image
Name

microorganisms-07-00526.pdf

Size

1.84 MB

Format

Adobe PDF

Checksum

(MD5):5225d90934e725faf8c9de257082b4d6

臺大位居世界頂尖大學之列,為永久珍藏及向國際展現本校豐碩的研究成果及學術能量,圖書館整合機構典藏(NTUR)與學術庫(AH)不同功能平台,成為臺大學術典藏NTU scholars。期能整合研究能量、促進交流合作、保存學術產出、推廣研究成果。

To permanently archive and promote researcher profiles and scholarly works, Library integrates the services of “NTU Repository” with “Academic Hub” to form NTU Scholars.

總館學科館員 (Main Library)
醫學圖書館學科館員 (Medical Library)
社會科學院辜振甫紀念圖書館學科館員 (Social Sciences Library)

開放取用是從使用者角度提升資訊取用性的社會運動,應用在學術研究上是透過將研究著作公開供使用者自由取閱,以促進學術傳播及因應期刊訂購費用逐年攀升。同時可加速研究發展、提升研究影響力,NTU Scholars即為本校的開放取用典藏(OA Archive)平台。(點選深入了解OA)

  • 請確認所上傳的全文是原創的內容,若該文件包含部分內容的版權非匯入者所有,或由第三方贊助與合作完成,請確認該版權所有者及第三方同意提供此授權。
    Please represent that the submission is your original work, and that you have the right to grant the rights to upload.
  • 若欲上傳已出版的全文電子檔,可使用Open policy finder網站查詢,以確認出版單位之版權政策。
    Please use Open policy finder to find a summary of permissions that are normally given as part of each publisher's copyright transfer agreement.
  • 網站簡介 (Quickstart Guide)
  • 使用手冊 (Instruction Manual)
  • 線上預約服務 (Booking Service)
  • 方案一:臺灣大學計算機中心帳號登入
    (With C&INC Email Account)
  • 方案二:ORCID帳號登入 (With ORCID)
  • 方案一:定期更新ORCID者,以ID匯入 (Search for identifier (ORCID))
  • 方案二:自行建檔 (Default mode Submission)
  • 方案三:學科館員協助匯入 (Email worklist to subject librarians)

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science