Repository logo
  • English
  • 中文
Log In
Have you forgotten your password?
  1. Home
  2. College of Engineering / 工學院
  3. Mechanical Engineering / 機械工程學系
  4. Development of 31kW Interior Permanent-Magnet Synchronous Motor for Electric Vehicles
 
  • Details

Development of 31kW Interior Permanent-Magnet Synchronous Motor for Electric Vehicles

Date Issued
2010
Date
2010
Author(s)
Hsu, Tzu-Ting
URI
http://ntur.lib.ntu.edu.tw//handle/246246/256310
Abstract
The objective of this work is to design a high-performance traction motor for a battery electric vehicle “Green Jumper” engineered in National Taiwan University. An important challenge of traction motor design for electric vehicle is to meet the requirements of different types of electric vehicles and of easy-to-construct configuration that can contribute to the overall cost reduction for the electric vehicle. The interior permanent magnet (IPM) synchronous motor is the natural choice of such niche applications because of their higher efficiency, compact size and achieving constant-power operation over a wide speed range with limited magnet strength requirement. However, the cost of magnet material is high compared with the cost of the other materials used in electric motor, and design attributes that minimize the required amount of magnet material are important challenge for high-performance motor design. The placement of the embedded permanent magnet is developed for the optimized design of high-performance IPM motor. The IPM motor with segmented magnet is first investigated in terms of its field weakening capability. Furthermore, this thesis proposed a design with permanent magnets being embedded in the U-shape flux barrier compared to the V-shape flux barrier of TOYOTA Prius. The comparisons of the average torque and no-load back EMF are given. The results of the motor performance comparisons are based on comprehensive use of finite element analysis tools (JMAG-Studio). From the FEA results, it shows that the U-shape flux barrier proposed in this work has better torque capability than the V-shape flux barrier adopted in TOYOTA Prius; that is, for a given torque, the design with U-shape flux barrier can yield a smaller motor with less amount of magnet and contribute to the overall reduction of the material cost. A prototype motor was constructed on the basis of the final optimized design. The no-load back EMF and the torque performance were measured and compared with the predicted results for experimental verification. Finally, the measured performance analysis was found to closely match with the predicted results.
Subjects
battery electric vehicle
IPM motor
embedded permanent magnet
Type
thesis
File(s)
Loading...
Thumbnail Image
Name

ntu-99-R97522532-1.pdf

Size

23.53 KB

Format

Adobe PDF

Checksum

(MD5):c37d522485b8e95964b086944a363e86

臺大位居世界頂尖大學之列,為永久珍藏及向國際展現本校豐碩的研究成果及學術能量,圖書館整合機構典藏(NTUR)與學術庫(AH)不同功能平台,成為臺大學術典藏NTU scholars。期能整合研究能量、促進交流合作、保存學術產出、推廣研究成果。

To permanently archive and promote researcher profiles and scholarly works, Library integrates the services of “NTU Repository” with “Academic Hub” to form NTU Scholars.

總館學科館員 (Main Library)
醫學圖書館學科館員 (Medical Library)
社會科學院辜振甫紀念圖書館學科館員 (Social Sciences Library)

開放取用是從使用者角度提升資訊取用性的社會運動,應用在學術研究上是透過將研究著作公開供使用者自由取閱,以促進學術傳播及因應期刊訂購費用逐年攀升。同時可加速研究發展、提升研究影響力,NTU Scholars即為本校的開放取用典藏(OA Archive)平台。(點選深入了解OA)

  • 請確認所上傳的全文是原創的內容,若該文件包含部分內容的版權非匯入者所有,或由第三方贊助與合作完成,請確認該版權所有者及第三方同意提供此授權。
    Please represent that the submission is your original work, and that you have the right to grant the rights to upload.
  • 若欲上傳已出版的全文電子檔,可使用Open policy finder網站查詢,以確認出版單位之版權政策。
    Please use Open policy finder to find a summary of permissions that are normally given as part of each publisher's copyright transfer agreement.
  • 網站簡介 (Quickstart Guide)
  • 使用手冊 (Instruction Manual)
  • 線上預約服務 (Booking Service)
  • 方案一:臺灣大學計算機中心帳號登入
    (With C&INC Email Account)
  • 方案二:ORCID帳號登入 (With ORCID)
  • 方案一:定期更新ORCID者,以ID匯入 (Search for identifier (ORCID))
  • 方案二:自行建檔 (Default mode Submission)
  • 方案三:學科館員協助匯入 (Email worklist to subject librarians)

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science