Repository logo
  • English
  • 中文
Log In
Have you forgotten your password?
  1. Home
  2. College of Engineering / 工學院
  3. Environmental Engineering / 環境工程學研究所
  4. Secondary inorganic aerosol chemistry and its impact on atmospheric visibility over an ammonia-rich urban area in Central Taiwan
 
  • Details

Secondary inorganic aerosol chemistry and its impact on atmospheric visibility over an ammonia-rich urban area in Central Taiwan

Journal
Environmental Pollution
Journal Volume
312
Date Issued
2022-11-01
Author(s)
Young, Li Hao
TA-CHIH HSIAO  
Griffith, Stephen M.
Huang, Ya Hsin
Hsieh, Hao Gang
Lin, Tang Huang
Tsay, Si Chee
Lin, Yu Jung
Lai, Kuan Lin
Lin, Neng Huei
Lin, Wen Yinn
DOI
10.1016/j.envpol.2022.119951
URI
https://scholars.lib.ntu.edu.tw/handle/123456789/633204
URL
https://api.elsevier.com/content/abstract/scopus_id/85138550725
Abstract
This study investigated the hourly inorganic aerosol chemistry and its impact on atmospheric visibility over an urban area in Central Taiwan, by relying on measurements of aerosol light extinction, inorganic gases, and PM2.5 water-soluble ions (WSIs), and simulations from a thermodynamic equilibrium model. On average, the sulfate (SO42−), nitrate (NO3−), and ammonium (NH4+) components (SNA) contributed ∼90% of WSI concentrations, which in turn made up about 50% of the PM2.5 mass. During the entire observation period, PM2.5 and SNA concentrations, aerosol pH, aerosol liquid water content (ALWC), and sulfur and nitrogen conversion ratios all increased with decreasing visibility. In particular, the NO3− contribution to PM2.5 increased, whereas the SO42− contribution decreased, with decreasing visibility. The diurnal variations of the above parameters indicate that the interaction and likely mutual promotion between NO3− and ALWC enhanced the hygroscopicity and aqueous-phase reactions conducive for NO3− formation, thus led to severely impaired visibility. The high relative humidity (RH) at the study area (average 70.7%) was a necessary but not sole factor leading to enhanced NO3− formation, which was more directly associated with elevated ALWC and aerosol pH. Simulations from the thermodynamic model depict that the inorganic aerosol system in the study area was characterized by fully neutralized SO42− (i.e. a saturated factor in visibility reduction) and excess NH4+ amidst a NH3-rich environment. As a result, PM2.5 composition was most sensitive to gas-phase HNO3, and hence NOx, and relatively insensitive to NH3. Consequently, a reduction of NOx would result in instantaneous cuts of NO3−, PM2.5, and ALWC, and hence improved visibility. On the other hand, a substantial amount of NH3 reduction (>70%) would be required to lower the aerosol pH, driving more than 50% of the particulate phase NO3− to the gas phase, thereby making NH3 a limiting factor in shifting PM2.5 composition.
Subjects
Aerosol chemistry | Control strategy | Gas-particle partition | Inorganic salts | Light extinction | Thermodynamic equilibrium
SDGs

[SDGs]SDG11

Publisher
ELSEVIER SCI LTD
Type
journal article

臺大位居世界頂尖大學之列,為永久珍藏及向國際展現本校豐碩的研究成果及學術能量,圖書館整合機構典藏(NTUR)與學術庫(AH)不同功能平台,成為臺大學術典藏NTU scholars。期能整合研究能量、促進交流合作、保存學術產出、推廣研究成果。

To permanently archive and promote researcher profiles and scholarly works, Library integrates the services of “NTU Repository” with “Academic Hub” to form NTU Scholars.

總館學科館員 (Main Library)
醫學圖書館學科館員 (Medical Library)
社會科學院辜振甫紀念圖書館學科館員 (Social Sciences Library)

開放取用是從使用者角度提升資訊取用性的社會運動,應用在學術研究上是透過將研究著作公開供使用者自由取閱,以促進學術傳播及因應期刊訂購費用逐年攀升。同時可加速研究發展、提升研究影響力,NTU Scholars即為本校的開放取用典藏(OA Archive)平台。(點選深入了解OA)

  • 請確認所上傳的全文是原創的內容,若該文件包含部分內容的版權非匯入者所有,或由第三方贊助與合作完成,請確認該版權所有者及第三方同意提供此授權。
    Please represent that the submission is your original work, and that you have the right to grant the rights to upload.
  • 若欲上傳已出版的全文電子檔,可使用Open policy finder網站查詢,以確認出版單位之版權政策。
    Please use Open policy finder to find a summary of permissions that are normally given as part of each publisher's copyright transfer agreement.
  • 網站簡介 (Quickstart Guide)
  • 使用手冊 (Instruction Manual)
  • 線上預約服務 (Booking Service)
  • 方案一:臺灣大學計算機中心帳號登入
    (With C&INC Email Account)
  • 方案二:ORCID帳號登入 (With ORCID)
  • 方案一:定期更新ORCID者,以ID匯入 (Search for identifier (ORCID))
  • 方案二:自行建檔 (Default mode Submission)
  • 方案三:學科館員協助匯入 (Email worklist to subject librarians)

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science