Investigation of the pathophysiology of cardiopulmonary bypass using rodent extracorporeal life support model
Journal
BMC Cardiovascular Disorders
Journal Volume
17
Journal Issue
1
Date Issued
2017
Author(s)
Abstract
Background: Extracorporeal life support (ECLS) systems are life-saving devices used for treating patients with severe cardiopulmonary failure. In this study, we implemented a rat model of ECLS without the administration of inotropes or vasopressors.
Methods: The rats underwent 5 min of untreated asphyxial cardiac arrest and were resuscitated by ECLS for 30 min. The right external jugular vein and right femoral artery were separately cannulated to the ECLS outflow and inflow, respectively. Thereafter, ECLS was terminated, wounds were closed, and mechanical ventilation was provided for another 90 min. Subsequently, blood gas and hemodynamic analyses were performed. The plasma levels of C-reactive protein (CRP), interleukin (IL)-6, IL-10, and tumor necrosis factor-alpha (TNF-α) were measured 120 min after reperfusion.
Results: The metabolic rate of lactate in the group of asphyxial cardiac arrest rescued by ECLS was slow; therefore, the pH at 120 min after reperfusion was significantly lower in this group than that in the group of normal rats treated with ECLS. The hemodynamic data showed no between-group differences. The plasma levels of CRP, IL-6, IL-10, and TNF-α increased after ECLS treatment.
Conclusions: We successfully established a rodent ECLS model, which might be a useful approach for studying the pathophysiology induced by ECLS under clinical conditions.
Methods: The rats underwent 5 min of untreated asphyxial cardiac arrest and were resuscitated by ECLS for 30 min. The right external jugular vein and right femoral artery were separately cannulated to the ECLS outflow and inflow, respectively. Thereafter, ECLS was terminated, wounds were closed, and mechanical ventilation was provided for another 90 min. Subsequently, blood gas and hemodynamic analyses were performed. The plasma levels of C-reactive protein (CRP), interleukin (IL)-6, IL-10, and tumor necrosis factor-alpha (TNF-α) were measured 120 min after reperfusion.
Results: The metabolic rate of lactate in the group of asphyxial cardiac arrest rescued by ECLS was slow; therefore, the pH at 120 min after reperfusion was significantly lower in this group than that in the group of normal rats treated with ECLS. The hemodynamic data showed no between-group differences. The plasma levels of CRP, IL-6, IL-10, and TNF-α increased after ECLS treatment.
Conclusions: We successfully established a rodent ECLS model, which might be a useful approach for studying the pathophysiology induced by ECLS under clinical conditions.
Subjects
Asphyxial cardiac arrest
Extracorporeal life support
Inflammatory response
Rat model
Publisher
BioMed Central Ltd.
Type
journal article