Repository logo
  • English
  • 中文
Log In
Have you forgotten your password?
  1. Home
  2. College of Electrical Engineering and Computer Science / 電機資訊學院
  3. Electrical Engineering / 電機工程學系
  4. Modified lasso screening for audio word-based music classification using large-scale dictionary
 
  • Details

Modified lasso screening for audio word-based music classification using large-scale dictionary

Journal
ICASSP, IEEE International Conference on Acoustics, Speech and Signal Processing - Proceedings
ISBN
9781479928927
Date Issued
2014-01-01
Author(s)
Jao, Ping Keng
Yeh, Chin Chia Michael
YI-HSUAN YANG  
DOI
10.1109/ICASSP.2014.6854596
URI
https://scholars.lib.ntu.edu.tw/handle/123456789/636391
URL
https://api.elsevier.com/content/abstract/scopus_id/84905247912
Abstract
Representing music information using audio codewords has led to state-of-the-art performance on various music classifcation benchmarks. Comparing to conventional audio descriptors, audio words offer greater fexibility in capturing the nuance of music signals, in that each codeword can be viewed as a quantization of the music universe and that the quantization goes fner as the size of the dictionary (i.e., audio codebook) increases. In practice, however, the high computational cost of codeword assignment might discourage the use of a large dictionary. This paper presents two modifcations of a LASSO screening technique developed in the compressive sensing feld to speed up the codeword assignment process. The frst modifcation exploits the repetitive nature of music signals, whereas the second one relaxes a screening constraint that is specifc to reconstruction but not for classifcation. Our experiments show that the proposed method enables the use of a dictionary of 10,000 codewords with runtime close to the case of using a dictionary of 1,000 codewords. Moreover, using the larger dictionary signifcantly improves the mean average precision (MAP) from 0.219 to 0.246 for tagging thousands of tracks with 147 possible genre tags. © 2014 IEEE.
Subjects
feature learning | genre classifcation | LASSO screening | music information retrieval | Sparse coding
Type
conference paper

臺大位居世界頂尖大學之列,為永久珍藏及向國際展現本校豐碩的研究成果及學術能量,圖書館整合機構典藏(NTUR)與學術庫(AH)不同功能平台,成為臺大學術典藏NTU scholars。期能整合研究能量、促進交流合作、保存學術產出、推廣研究成果。

To permanently archive and promote researcher profiles and scholarly works, Library integrates the services of “NTU Repository” with “Academic Hub” to form NTU Scholars.

總館學科館員 (Main Library)
醫學圖書館學科館員 (Medical Library)
社會科學院辜振甫紀念圖書館學科館員 (Social Sciences Library)

開放取用是從使用者角度提升資訊取用性的社會運動,應用在學術研究上是透過將研究著作公開供使用者自由取閱,以促進學術傳播及因應期刊訂購費用逐年攀升。同時可加速研究發展、提升研究影響力,NTU Scholars即為本校的開放取用典藏(OA Archive)平台。(點選深入了解OA)

  • 請確認所上傳的全文是原創的內容,若該文件包含部分內容的版權非匯入者所有,或由第三方贊助與合作完成,請確認該版權所有者及第三方同意提供此授權。
    Please represent that the submission is your original work, and that you have the right to grant the rights to upload.
  • 若欲上傳已出版的全文電子檔,可使用Open policy finder網站查詢,以確認出版單位之版權政策。
    Please use Open policy finder to find a summary of permissions that are normally given as part of each publisher's copyright transfer agreement.
  • 網站簡介 (Quickstart Guide)
  • 使用手冊 (Instruction Manual)
  • 線上預約服務 (Booking Service)
  • 方案一:臺灣大學計算機中心帳號登入
    (With C&INC Email Account)
  • 方案二:ORCID帳號登入 (With ORCID)
  • 方案一:定期更新ORCID者,以ID匯入 (Search for identifier (ORCID))
  • 方案二:自行建檔 (Default mode Submission)
  • 方案三:學科館員協助匯入 (Email worklist to subject librarians)

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science