Repository logo
  • English
  • 中文
Log In
Have you forgotten your password?
  1. Home
  2. College of Science / 理學院
  3. Oceanography / 海洋研究所
  4. Deformation of Accretionary Wedges Based on 2D Distinct Element Modeling
 
  • Details

Deformation of Accretionary Wedges Based on 2D Distinct Element Modeling

Date Issued
2007
Date
2007
Author(s)
Wang, Fang-Lin
DOI
en-US
URI
http://ntur.lib.ntu.edu.tw//handle/246246/56614
Abstract
This study explores the dominant role played by décollement basal friction μb on the deformation style or pattern of accretionary wedges. The Particle Flow Code in 2 Dimensions (PFC2D), a special implementation of distinct element method (DEM) using circular elements, is applied. In this study, basal friction of the décollement is designated to range from 0.05 to 0.9, and the interparticle friction is fixed as 0.5. Based on the modeling results with different basal frictions, two modes of deformation are clearly observed. For the low basal friction case (μb ≦ 0.3~0.4), the frontal accretion is prominent and is dominated by ‘pop-up’ structures at or near the toe of the wedge. For the high basal friction case (μb≧0.3~0.4), underthrusting is the principal feature during deformation throughout the wedge. We can observe not only the difference in the evolution but also the variation of thrust angle in the accretionary wedge during the experiments. Thrust angle varies from about 50° at μb=0.05 to about 10° at μb=0.9. Furthermore, we find a transition mode of deformation presents in μb=0.3~0.4 observed from growth rate of distance to deformation front, deformation zone, and uplift rate of maximum height. The range of this transition zone gives us another way to distinguish the critical value of the transit from low to high basal friction. Moreover, the surface slope changes from 3°±1° at μb=0.05 to 19°±1° at μb=0.9 and reaches stable at μb=0.35. Based on analyses on growth rate, uplift rate, and surface slope in the numerical models, geometric steady state of accretionary wedges is achieved when μb=0.3~0.4.
Subjects
增積岩體
離散元素法
二維顆粒流軟體(Particle Flow Code in 2 Dimensions: PFC2D)
滑脫面
滑脫面摩擦係數
Accretionary wedge
Distinct element method
Particle Flow Code in 2 Dimensions (PFC2D)
Decollement
Basal friction
Type
thesis
File(s)
Loading...
Thumbnail Image
Name

ntu-96-R92241304-1.pdf

Size

23.53 KB

Format

Adobe PDF

Checksum

(MD5):9855c473d54cfd7322c224d91316396c

臺大位居世界頂尖大學之列,為永久珍藏及向國際展現本校豐碩的研究成果及學術能量,圖書館整合機構典藏(NTUR)與學術庫(AH)不同功能平台,成為臺大學術典藏NTU scholars。期能整合研究能量、促進交流合作、保存學術產出、推廣研究成果。

To permanently archive and promote researcher profiles and scholarly works, Library integrates the services of “NTU Repository” with “Academic Hub” to form NTU Scholars.

總館學科館員 (Main Library)
醫學圖書館學科館員 (Medical Library)
社會科學院辜振甫紀念圖書館學科館員 (Social Sciences Library)

開放取用是從使用者角度提升資訊取用性的社會運動,應用在學術研究上是透過將研究著作公開供使用者自由取閱,以促進學術傳播及因應期刊訂購費用逐年攀升。同時可加速研究發展、提升研究影響力,NTU Scholars即為本校的開放取用典藏(OA Archive)平台。(點選深入了解OA)

  • 請確認所上傳的全文是原創的內容,若該文件包含部分內容的版權非匯入者所有,或由第三方贊助與合作完成,請確認該版權所有者及第三方同意提供此授權。
    Please represent that the submission is your original work, and that you have the right to grant the rights to upload.
  • 若欲上傳已出版的全文電子檔,可使用Open policy finder網站查詢,以確認出版單位之版權政策。
    Please use Open policy finder to find a summary of permissions that are normally given as part of each publisher's copyright transfer agreement.
  • 網站簡介 (Quickstart Guide)
  • 使用手冊 (Instruction Manual)
  • 線上預約服務 (Booking Service)
  • 方案一:臺灣大學計算機中心帳號登入
    (With C&INC Email Account)
  • 方案二:ORCID帳號登入 (With ORCID)
  • 方案一:定期更新ORCID者,以ID匯入 (Search for identifier (ORCID))
  • 方案二:自行建檔 (Default mode Submission)
  • 方案三:學科館員協助匯入 (Email worklist to subject librarians)

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science