Repository logo
  • English
  • 中文
Log In
Have you forgotten your password?
  1. Home
  2. College of Engineering / 工學院
  3. Civil Engineering / 土木工程學系
  4. A study of seismic steel plate shear walls using box columns with or without infill concrete
 
  • Details

A study of seismic steel plate shear walls using box columns with or without infill concrete

Date Issued
2012
Date
2012
Author(s)
Huang, Hsuan-Yu
URI
http://ntur.lib.ntu.edu.tw//handle/246246/255465
Abstract
Steel Plate Shear Walls(SPSWs) have evolved into an effective lateral force resisting system in recent years. However, it is still not widely adopted in Taiwan construction practice. This may be due to the following three reasons: 1) The capacity design of the boundary elements must be checked by using the strip model, which may be complicated and time-consuming. 2) According to the AISC seismic building provisions, the column plastic hinge should be designed to form only at 1st story column bottom end. Therefore the design result for the 1st story column may not be economical. 3) In Taiwan, built-up box columns are commonly adopted. However, most of the past studies of SPSWs focused on wide flange boundary columns. If the boundary columns in the SPSWs are concrete filled steel box column or bare steel box column, the inner column flanges connected to the steel panel would be subjected to the out-of-plane pull-out forces when the tension field action develops. These vertical boundary members also have to resist the axial force and the in-plane bending moment at the same time. Allowing the inner column flange to go into minor yielding under the pull-out effects, this study proposes the column flange capacity design methods. It considers two simplified models, fixed clear-span beam and flat-portal frame for steel box column with and without infill concrete respectively, and the full tension field pull-out effects to design the inner column flanges. The Von Mises yielding criterion of plane stress is used to estimate stress distribution of inner column flange subjected to column axial force, in-plane moment and column flange out-of-plane pull-out moment. In order to investigate the seismic responses of SPSWs using box columns with and without infill concrete, and to verify the effectiveness of the proposed column flange capacity design requirements that prevent the plastic hinge from forming at top end of bottom column under maximum considered earthquake, three full-scale two-story SPSW specimens were tested in National Center for Research on Earthquake Engineering. Each specimen is 3.42-meter wide and 7.64-meter tall. The 2.6mm-thick low yield strength steel plates and the same boundary beams were adopted. Three different column sizes were designed for the three specimens considering the column inner flange out-of-plane flexural requirements. They were named NSB, NCB and WCB in which Specimen NCB and WCB used concrete filled box column, and Specimen NSB used bare steel box column without infill concrete. Results of the ABAQUS pushover analyses and the cyclic tests up to a roof drift of 0.04 radians confirm that the proposed column flange flexural requirements and column capacity design are suitable for seismic SPSW using box columns with or without infill concrete. It could achieve both good seismic performance and economy. The specimen NCB having minor yielding in inner column flanges and the 1st story column plastic deformations spreading over the mid-high of the column still possessed rather good load-carrying capacity. In addition, infill concrete for steel box column enhances the compression capacity and local buckle resistance. However, under the steel panel pull-out forces major yielding of the inner column flanges in Specimen WCB was observed. This design should be avoided as significant permanent plastic deformations could develop.
Subjects
steel plate shear walls
box column
concrete filled box column
tension field action
column flange out-of-plane deformation
seismic design
capacity design
Type
thesis
File(s)
Loading...
Thumbnail Image
Name

index.html

Size

23.27 KB

Format

HTML

Checksum

(MD5):369e082595932b7c38fe5a0a2b1e6a0c

臺大位居世界頂尖大學之列,為永久珍藏及向國際展現本校豐碩的研究成果及學術能量,圖書館整合機構典藏(NTUR)與學術庫(AH)不同功能平台,成為臺大學術典藏NTU scholars。期能整合研究能量、促進交流合作、保存學術產出、推廣研究成果。

To permanently archive and promote researcher profiles and scholarly works, Library integrates the services of “NTU Repository” with “Academic Hub” to form NTU Scholars.

總館學科館員 (Main Library)
醫學圖書館學科館員 (Medical Library)
社會科學院辜振甫紀念圖書館學科館員 (Social Sciences Library)

開放取用是從使用者角度提升資訊取用性的社會運動,應用在學術研究上是透過將研究著作公開供使用者自由取閱,以促進學術傳播及因應期刊訂購費用逐年攀升。同時可加速研究發展、提升研究影響力,NTU Scholars即為本校的開放取用典藏(OA Archive)平台。(點選深入了解OA)

  • 請確認所上傳的全文是原創的內容,若該文件包含部分內容的版權非匯入者所有,或由第三方贊助與合作完成,請確認該版權所有者及第三方同意提供此授權。
    Please represent that the submission is your original work, and that you have the right to grant the rights to upload.
  • 若欲上傳已出版的全文電子檔,可使用Open policy finder網站查詢,以確認出版單位之版權政策。
    Please use Open policy finder to find a summary of permissions that are normally given as part of each publisher's copyright transfer agreement.
  • 網站簡介 (Quickstart Guide)
  • 使用手冊 (Instruction Manual)
  • 線上預約服務 (Booking Service)
  • 方案一:臺灣大學計算機中心帳號登入
    (With C&INC Email Account)
  • 方案二:ORCID帳號登入 (With ORCID)
  • 方案一:定期更新ORCID者,以ID匯入 (Search for identifier (ORCID))
  • 方案二:自行建檔 (Default mode Submission)
  • 方案三:學科館員協助匯入 (Email worklist to subject librarians)

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science