Repository logo
  • English
  • 中文
Log In
Have you forgotten your password?
  1. Home
  2. College of Medicine / 醫學院
  3. School of Medicine / 醫學系
  4. Effect of Dynamic Compression on in Vitro Chondrocyte Metabolism
 
  • Details

Effect of Dynamic Compression on in Vitro Chondrocyte Metabolism

Resource
INTERNATIONAL JOURNAL OF ARTIFICIAL ORGANS v.31 n.5 pp.439-449
Journal
INTERNATIONAL JOURNAL OF ARTIFICIAL ORGANS
Journal Volume
v.31
Journal Issue
n.5
Pages
439-449
Date Issued
2008
Date
2008
Author(s)
TSUANG, YANG-HWEI
CHEN, LI-TING
CHENG, CHENG-KUNG
SUN, JUI-SHENG
URI
http://ntur.lib.ntu.edu.tw//handle/246246/175227
Abstract
BACKGROUND: Chondrocytes can detect and respond to the mechanical environment by altering their metabolism. This study was designed to explore the effects of dynamic compression on chondrocyte metabolism. METHODS: Chondrocytes were harvested from newborn Wistar rats. After 7 days of expansion, chondrocytes embedded in agarose discs underwent uniaxial unconfined dynamic compression loads at different amplitudes (5%, 10%, and 15%) and frequencies (0.5 Hz, 1.0 Hz, 2.0 Hz, and 3.0 Hz) with a duration of 24 hours. The delayed effects on the chondrocytes were studied at 1, 3, and 7 days after the experiment. RESULTS: The results showed that at 10% strain, higher-frequency compression pressure can enhance the proliferation of chondrocytes. The synthesis of glycosaminoglycan (GAG) increased at 10%-15% strain and a 1-Hz load. The synthesis of nitric oxide (NO) increased at the 0.5-Hz load; while decreasing at the 15% strain. With 10% strain, 1 Hz dynamic compression, the proliferation of chondrocytes and GAG synthesis increased and persisted for 7 days, and NO synthesis decreased at the third and seventh days of culture. CONCLUSIONS: This study showed that chondrocytes respond metabolically to compressive loading, which is expected to modulate the growth and the resultant biomechanical properties of these tissue- engineered constructs during culture.
Subjects
agarose
bioreactors
dynamic compression
nitric oxide
proteoglycan

臺大位居世界頂尖大學之列,為永久珍藏及向國際展現本校豐碩的研究成果及學術能量,圖書館整合機構典藏(NTUR)與學術庫(AH)不同功能平台,成為臺大學術典藏NTU scholars。期能整合研究能量、促進交流合作、保存學術產出、推廣研究成果。

To permanently archive and promote researcher profiles and scholarly works, Library integrates the services of “NTU Repository” with “Academic Hub” to form NTU Scholars.

總館學科館員 (Main Library)
醫學圖書館學科館員 (Medical Library)
社會科學院辜振甫紀念圖書館學科館員 (Social Sciences Library)

開放取用是從使用者角度提升資訊取用性的社會運動,應用在學術研究上是透過將研究著作公開供使用者自由取閱,以促進學術傳播及因應期刊訂購費用逐年攀升。同時可加速研究發展、提升研究影響力,NTU Scholars即為本校的開放取用典藏(OA Archive)平台。(點選深入了解OA)

  • 請確認所上傳的全文是原創的內容,若該文件包含部分內容的版權非匯入者所有,或由第三方贊助與合作完成,請確認該版權所有者及第三方同意提供此授權。
    Please represent that the submission is your original work, and that you have the right to grant the rights to upload.
  • 若欲上傳已出版的全文電子檔,可使用Open policy finder網站查詢,以確認出版單位之版權政策。
    Please use Open policy finder to find a summary of permissions that are normally given as part of each publisher's copyright transfer agreement.
  • 網站簡介 (Quickstart Guide)
  • 使用手冊 (Instruction Manual)
  • 線上預約服務 (Booking Service)
  • 方案一:臺灣大學計算機中心帳號登入
    (With C&INC Email Account)
  • 方案二:ORCID帳號登入 (With ORCID)
  • 方案一:定期更新ORCID者,以ID匯入 (Search for identifier (ORCID))
  • 方案二:自行建檔 (Default mode Submission)
  • 方案三:學科館員協助匯入 (Email worklist to subject librarians)

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science