Repository logo
  • English
  • 中文
Log In
Have you forgotten your password?
  1. Home
  2. College of Electrical Engineering and Computer Science / 電機資訊學院
  3. Communication Engineering / 電信工程學研究所
  4. 30 GHz Harmonic Oscillator Design Using Substrate Integrated Waveguide Cavity Resonator
 
  • Details

30 GHz Harmonic Oscillator Design Using Substrate Integrated Waveguide Cavity Resonator

Date Issued
2006
Date
2006
Author(s)
Chang, Chun-Chu
DOI
en-US
URI
http://ntur.lib.ntu.edu.tw//handle/246246/58555
Abstract
To fulfill the increasing demand for wireless communication applications nowadays, the research and development of millimeter-wave components and modules are becoming essential. Oscillators are key components in such radio frequency (RF) systems. However, generating highly stable signals at high frequencies is challenging because of the frequency limitation of device and the rising influences of device parasitic effects. Harmonic oscillators have been proven to be an efficient way to generate high frequency signals; furthermore, the substrate integrated waveguide (SIW) technique was proposed recently, which possesses the properties of low-loss and high-density integration of microwave/millimeter-wave circuits. Thus, a SIW cavity resonator can be incorporated into the oscillator design to achieve a low phase noise response. In this thesis, two topologies of harmonic oscillators are employed: one is the push-push oscillator and the other one is the osciplier. Then, by properly exciting the resonant mode of the cavity resonator, certain mode characteristics are applicable to the oscillator design. In the push-push oscillator, a SIW cavity resonator of its TE102 mode at 15 GHz for the fundamental oscillation is designed and acts as the coupling network of the two sub-oscillators. In the osciplier, the SIW cavity resonator is, on the other hand, designed with its TE101 mode at 15 GHz and acts as the feedback network of the oscillator. Both harmonic oscillators are designed to generate 30 GHz output signals, which are the second harmonic, and fabricated in printed-circuit-board (PCB) process.
Subjects
諧波振盪器
基板合成波導
推-推式振盪器
振盪倍頻器
harmonic oscillator
substrate integrated waveguide
push-push oscillator
osciplier
SIW
Type
thesis
File(s)
Loading...
Thumbnail Image
Name

ntu-95-R93942017-1.pdf

Size

23.31 KB

Format

Adobe PDF

Checksum

(MD5):2c61951bc7b507c4e0041b9b89898634

臺大位居世界頂尖大學之列,為永久珍藏及向國際展現本校豐碩的研究成果及學術能量,圖書館整合機構典藏(NTUR)與學術庫(AH)不同功能平台,成為臺大學術典藏NTU scholars。期能整合研究能量、促進交流合作、保存學術產出、推廣研究成果。

To permanently archive and promote researcher profiles and scholarly works, Library integrates the services of “NTU Repository” with “Academic Hub” to form NTU Scholars.

總館學科館員 (Main Library)
醫學圖書館學科館員 (Medical Library)
社會科學院辜振甫紀念圖書館學科館員 (Social Sciences Library)

開放取用是從使用者角度提升資訊取用性的社會運動,應用在學術研究上是透過將研究著作公開供使用者自由取閱,以促進學術傳播及因應期刊訂購費用逐年攀升。同時可加速研究發展、提升研究影響力,NTU Scholars即為本校的開放取用典藏(OA Archive)平台。(點選深入了解OA)

  • 請確認所上傳的全文是原創的內容,若該文件包含部分內容的版權非匯入者所有,或由第三方贊助與合作完成,請確認該版權所有者及第三方同意提供此授權。
    Please represent that the submission is your original work, and that you have the right to grant the rights to upload.
  • 若欲上傳已出版的全文電子檔,可使用Open policy finder網站查詢,以確認出版單位之版權政策。
    Please use Open policy finder to find a summary of permissions that are normally given as part of each publisher's copyright transfer agreement.
  • 網站簡介 (Quickstart Guide)
  • 使用手冊 (Instruction Manual)
  • 線上預約服務 (Booking Service)
  • 方案一:臺灣大學計算機中心帳號登入
    (With C&INC Email Account)
  • 方案二:ORCID帳號登入 (With ORCID)
  • 方案一:定期更新ORCID者,以ID匯入 (Search for identifier (ORCID))
  • 方案二:自行建檔 (Default mode Submission)
  • 方案三:學科館員協助匯入 (Email worklist to subject librarians)

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science