Repository logo
  • English
  • 中文
Log In
Have you forgotten your password?
  1. Home
  2. College of Engineering / 工學院
  3. Materials Science and Engineering / 材料科學與工程學系
  4. Tailored thermoelectric performance of poly(phenylene butadiynylene)s/carbon nanotubes nanocomposites towards wearable thermoelectric generator application
 
  • Details

Tailored thermoelectric performance of poly(phenylene butadiynylene)s/carbon nanotubes nanocomposites towards wearable thermoelectric generator application

Journal
Composites Part B: Engineering
Journal Volume
286
Start Page
111779
ISSN
1359-8368
Date Issued
2024-11
Author(s)
Wei-Chen Shih
Megumi Matsuda
Kazuki Konno
Po-Shen Lin
Tomoya Higashihara
CHENG-LIANG LIU  
DOI
10.1016/j.compositesb.2024.111779
DOI
10.1016/j.compositesb.2024.111779
URI
https://www.scopus.com/record/display.uri?eid=2-s2.0-85201750397&origin=resultslist
https://scholars.lib.ntu.edu.tw/handle/123456789/721601
Abstract
In this study, two conjugated polymers (CPs) featuring poly(phenylene butadiynylene) (PPB) were meticulously synthesized and composited with single-walled carbon nanotubes (SWCNTs) to investigate their thermoelectric properties and fabricate wearable thermoelectric generators (TEGs). These CPs, designated as P1 and P2, were tailored with distinct side chain configurations by incorporating 2-butyloctyloxy and 6-(methyldioctylsilyl)hexyloxy groups, respectively. Notably, P2, characterized by longer side chains with branchpoints farther from the backbone, exhibited planar backbone structure and enhanced solubility, consequently engendering stronger π–π interaction with SWCNTs and facilitating the disperse of SWCNTs through polymer wrapping at bundle surface. Such characteristics therefore contributed to the superior thermoelectric performances of the P2/SWCNTs nanocomposite, yielding a higher power factor (PF) of 216.5 μW m−1 K−2 for the spin-coated film. Furthermore, the corresponding wearable TEGs, which were constructed through spray-coating with 14 legs, resulted in an output power of approximately 49.6 nW under a temperature difference of 25 K, exhibiting successful harvesting of waste heat. Further applications also demonstrated operational efficacy under diverse conditions. These findings not only underscored the significance of side chain engineering in tailoring the thermoelectric properties of CP/SWCNTs nanocomposites but also demonstrated the feasibility of fabricating high-performance wearable thermoelectric devices applicable in versatile contexts.
Subjects
Carbon nanotubes
Conjugated polymers
Nanocomposites
Thermoelectrics
Wearable devices
Publisher
Elsevier BV
Type
journal article

臺大位居世界頂尖大學之列,為永久珍藏及向國際展現本校豐碩的研究成果及學術能量,圖書館整合機構典藏(NTUR)與學術庫(AH)不同功能平台,成為臺大學術典藏NTU scholars。期能整合研究能量、促進交流合作、保存學術產出、推廣研究成果。

To permanently archive and promote researcher profiles and scholarly works, Library integrates the services of “NTU Repository” with “Academic Hub” to form NTU Scholars.

總館學科館員 (Main Library)
醫學圖書館學科館員 (Medical Library)
社會科學院辜振甫紀念圖書館學科館員 (Social Sciences Library)

開放取用是從使用者角度提升資訊取用性的社會運動,應用在學術研究上是透過將研究著作公開供使用者自由取閱,以促進學術傳播及因應期刊訂購費用逐年攀升。同時可加速研究發展、提升研究影響力,NTU Scholars即為本校的開放取用典藏(OA Archive)平台。(點選深入了解OA)

  • 請確認所上傳的全文是原創的內容,若該文件包含部分內容的版權非匯入者所有,或由第三方贊助與合作完成,請確認該版權所有者及第三方同意提供此授權。
    Please represent that the submission is your original work, and that you have the right to grant the rights to upload.
  • 若欲上傳已出版的全文電子檔,可使用Open policy finder網站查詢,以確認出版單位之版權政策。
    Please use Open policy finder to find a summary of permissions that are normally given as part of each publisher's copyright transfer agreement.
  • 網站簡介 (Quickstart Guide)
  • 使用手冊 (Instruction Manual)
  • 線上預約服務 (Booking Service)
  • 方案一:臺灣大學計算機中心帳號登入
    (With C&INC Email Account)
  • 方案二:ORCID帳號登入 (With ORCID)
  • 方案一:定期更新ORCID者,以ID匯入 (Search for identifier (ORCID))
  • 方案二:自行建檔 (Default mode Submission)
  • 方案三:學科館員協助匯入 (Email worklist to subject librarians)

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science