Repository logo
  • English
  • 中文
Log In
Have you forgotten your password?
  1. Home
  2. College of Engineering / 工學院
  3. Civil Engineering / 土木工程學系
  4. Building Manufacturing Deep Learning Models with Minimal and Imbalanced Training Data Using Domain Adaptation and Data Augmentation
 
  • Details

Building Manufacturing Deep Learning Models with Minimal and Imbalanced Training Data Using Domain Adaptation and Data Augmentation

Journal
Proceedings of the IEEE International Conference on Industrial Technology
Journal Volume
2023-April
ISBN
9798350336504
Date Issued
2023-01-01
Author(s)
Li, Adrian Shuai
Bertino, Elisa
RIH-TENG WU  
Wu, Ting Yan
DOI
10.1109/ICIT58465.2023.10143099
URI
https://scholars.lib.ntu.edu.tw/handle/123456789/634112
URL
https://api.elsevier.com/content/abstract/scopus_id/85163401636
Abstract
Deep learning (DL) techniques are highly effective for defect detection from images. Training DL classification models, however, requires vast amounts of labeled data which is often expensive to collect. In many cases, not only the available training data is limited but may also imbalanced. In this paper, we propose a novel domain adaptation (DA) approach to address the problem of labeled training data scarcity for a target learning task by transferring knowledge gained from an existing source dataset used for a similar learning task. Our approach works for scenarios where the source dataset and the dataset available for the target learning task have same or different feature spaces. We combine our DA approach with an autoencoder-based data augmentation approach to address the problem of imbalanced target datasets. We evaluate our combined approach using image data for wafer defect prediction. The experiments show its superior performance against other algorithms when the number of labeled samples in the target dataset is significantly small and the target dataset is imbalanced.
Subjects
Deep learning | domain adaptation | few-shots learning
SDGs

[SDGs]SDG9

Type
conference paper

臺大位居世界頂尖大學之列,為永久珍藏及向國際展現本校豐碩的研究成果及學術能量,圖書館整合機構典藏(NTUR)與學術庫(AH)不同功能平台,成為臺大學術典藏NTU scholars。期能整合研究能量、促進交流合作、保存學術產出、推廣研究成果。

To permanently archive and promote researcher profiles and scholarly works, Library integrates the services of “NTU Repository” with “Academic Hub” to form NTU Scholars.

總館學科館員 (Main Library)
醫學圖書館學科館員 (Medical Library)
社會科學院辜振甫紀念圖書館學科館員 (Social Sciences Library)

開放取用是從使用者角度提升資訊取用性的社會運動,應用在學術研究上是透過將研究著作公開供使用者自由取閱,以促進學術傳播及因應期刊訂購費用逐年攀升。同時可加速研究發展、提升研究影響力,NTU Scholars即為本校的開放取用典藏(OA Archive)平台。(點選深入了解OA)

  • 請確認所上傳的全文是原創的內容,若該文件包含部分內容的版權非匯入者所有,或由第三方贊助與合作完成,請確認該版權所有者及第三方同意提供此授權。
    Please represent that the submission is your original work, and that you have the right to grant the rights to upload.
  • 若欲上傳已出版的全文電子檔,可使用Open policy finder網站查詢,以確認出版單位之版權政策。
    Please use Open policy finder to find a summary of permissions that are normally given as part of each publisher's copyright transfer agreement.
  • 網站簡介 (Quickstart Guide)
  • 使用手冊 (Instruction Manual)
  • 線上預約服務 (Booking Service)
  • 方案一:臺灣大學計算機中心帳號登入
    (With C&INC Email Account)
  • 方案二:ORCID帳號登入 (With ORCID)
  • 方案一:定期更新ORCID者,以ID匯入 (Search for identifier (ORCID))
  • 方案二:自行建檔 (Default mode Submission)
  • 方案三:學科館員協助匯入 (Email worklist to subject librarians)

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science