Repository logo
  • English
  • 中文
Log In
Have you forgotten your password?
  1. Home
  2. College of Electrical Engineering and Computer Science / 電機資訊學院
  3. Computer Science and Information Engineering / 資訊工程學系
  4. 3D Localization and Mapping Using One 2D LIDAR
 
  • Details

3D Localization and Mapping Using One 2D LIDAR

Date Issued
2009
Date
2009
Author(s)
Dopfer, Andreas
URI
http://ntur.lib.ntu.edu.tw//handle/246246/183406
Abstract
Much work on localization and mapping using LIDAR has been done in mobile robotics. While earlier work was done only in the two dimensional domain, a recent shift towards three dimensional localization and mapping using laser rangefinder can be seen. Three dimensional representations allow a more accurate modeling of the real world, allowing more sophisticated path planning and leading to better obstacle avoidance. Also the performance of localization can be improved,and three dimensional data allows better object recognition than 2D data.echniques capturing 3D data involve either multiple 2D LIDARS, one 2D LIDAR that is nodded or rotated using an external actuator together with highly accurate orientationensing and synchronization, or an integrated, expensive 3D scanning system. In this thesis we propose a technique to capture 3D data only using one 2D LIDAR. To do so the robotsotion is utilized together with reasonable assumptions. It is assumed that the ground the robot is moving on is flat and visible in the scan, that the sensors height is known and that the environment has vertical structures.irst an initial calibration procedure using a camera together with the LIDAR is performed to reveal the extrinsic parameters between robot and the sensor. The localizationroblem is divided into two steps. The LIDARs sensing plane is tilted away from the robots direction of motion towards the floor (or another known flat structure in the environment). The detection of the floor allows to estimate the angular orientation of the sensor in two dimensions. Using these estimates the range data can be transformed, so that known methods to estimate the missing parameters of the full LIDAR pose can be adopted. Being able to accurately estimate the three dimensional displacement between two consecutive scans allows to build an accurate three dimensional map of the environment.
Subjects
3D mapping
LIDAR
Type
thesis
File(s)
Loading...
Thumbnail Image
Name

ntu-98-R96922144-1.pdf

Size

23.32 KB

Format

Adobe PDF

Checksum

(MD5):1cbb9d74784eaa4f6ce8ff1faf65b822

臺大位居世界頂尖大學之列,為永久珍藏及向國際展現本校豐碩的研究成果及學術能量,圖書館整合機構典藏(NTUR)與學術庫(AH)不同功能平台,成為臺大學術典藏NTU scholars。期能整合研究能量、促進交流合作、保存學術產出、推廣研究成果。

To permanently archive and promote researcher profiles and scholarly works, Library integrates the services of “NTU Repository” with “Academic Hub” to form NTU Scholars.

總館學科館員 (Main Library)
醫學圖書館學科館員 (Medical Library)
社會科學院辜振甫紀念圖書館學科館員 (Social Sciences Library)

開放取用是從使用者角度提升資訊取用性的社會運動,應用在學術研究上是透過將研究著作公開供使用者自由取閱,以促進學術傳播及因應期刊訂購費用逐年攀升。同時可加速研究發展、提升研究影響力,NTU Scholars即為本校的開放取用典藏(OA Archive)平台。(點選深入了解OA)

  • 請確認所上傳的全文是原創的內容,若該文件包含部分內容的版權非匯入者所有,或由第三方贊助與合作完成,請確認該版權所有者及第三方同意提供此授權。
    Please represent that the submission is your original work, and that you have the right to grant the rights to upload.
  • 若欲上傳已出版的全文電子檔,可使用Open policy finder網站查詢,以確認出版單位之版權政策。
    Please use Open policy finder to find a summary of permissions that are normally given as part of each publisher's copyright transfer agreement.
  • 網站簡介 (Quickstart Guide)
  • 使用手冊 (Instruction Manual)
  • 線上預約服務 (Booking Service)
  • 方案一:臺灣大學計算機中心帳號登入
    (With C&INC Email Account)
  • 方案二:ORCID帳號登入 (With ORCID)
  • 方案一:定期更新ORCID者,以ID匯入 (Search for identifier (ORCID))
  • 方案二:自行建檔 (Default mode Submission)
  • 方案三:學科館員協助匯入 (Email worklist to subject librarians)

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science