Repository logo
  • English
  • 中文
Log In
Have you forgotten your password?
  1. Home
  2. College of Electrical Engineering and Computer Science / 電機資訊學院
  3. Computer Science and Information Engineering / 資訊工程學系
  4. Facial Attribute Detection by Deep Neural Network
 
  • Details

Facial Attribute Detection by Deep Neural Network

Date Issued
2016
Date
2016
Author(s)
Lan, Jia-Shin
DOI
10.6342/NTU201602385
URI
http://ntur.lib.ntu.edu.tw//handle/246246/275480
Abstract
Facial attributes have gained popularity in the past few years in machine vision tasks including recognition, classification, and retrieval. Predicting facial attributes from web images is very challenging due to background clutters and face variations, such as scale, pose, and illumination in the real world. The key to this problem is to build proper feature representations to cope with these unfavourable conditions. Given the success of deep neural network (DNN) in image classification, the high level DNN feature as an intuitive and reasonable choice has been widely utilized for this problem. DNN is powerful to handle face variation, but it needs heavy computation efforts and memory storage resources. Improving the accuracy of attribute classifiers is an important first step in any application which uses these attributes. Therefore, our goal is improving face attribute detection performance with smaller architecture of deep models. Our network is pre-trained with massive face identities, then fine-tuned with attribute labels. We consider the DNN features as face representation for attribute prediction. We demonstrate the effectiveness of our method by producing results on the challenging publicly available datase CelebA.
Subjects
facial attribute detection
DNN
multi-label classification
Type
thesis
File(s)
Loading...
Thumbnail Image
Name

ntu-105-R03922004-1.pdf

Size

23.32 KB

Format

Adobe PDF

Checksum

(MD5):a25cc782c8346d6e66705a56f327f7aa

臺大位居世界頂尖大學之列,為永久珍藏及向國際展現本校豐碩的研究成果及學術能量,圖書館整合機構典藏(NTUR)與學術庫(AH)不同功能平台,成為臺大學術典藏NTU scholars。期能整合研究能量、促進交流合作、保存學術產出、推廣研究成果。

To permanently archive and promote researcher profiles and scholarly works, Library integrates the services of “NTU Repository” with “Academic Hub” to form NTU Scholars.

總館學科館員 (Main Library)
醫學圖書館學科館員 (Medical Library)
社會科學院辜振甫紀念圖書館學科館員 (Social Sciences Library)

開放取用是從使用者角度提升資訊取用性的社會運動,應用在學術研究上是透過將研究著作公開供使用者自由取閱,以促進學術傳播及因應期刊訂購費用逐年攀升。同時可加速研究發展、提升研究影響力,NTU Scholars即為本校的開放取用典藏(OA Archive)平台。(點選深入了解OA)

  • 請確認所上傳的全文是原創的內容,若該文件包含部分內容的版權非匯入者所有,或由第三方贊助與合作完成,請確認該版權所有者及第三方同意提供此授權。
    Please represent that the submission is your original work, and that you have the right to grant the rights to upload.
  • 若欲上傳已出版的全文電子檔,可使用Open policy finder網站查詢,以確認出版單位之版權政策。
    Please use Open policy finder to find a summary of permissions that are normally given as part of each publisher's copyright transfer agreement.
  • 網站簡介 (Quickstart Guide)
  • 使用手冊 (Instruction Manual)
  • 線上預約服務 (Booking Service)
  • 方案一:臺灣大學計算機中心帳號登入
    (With C&INC Email Account)
  • 方案二:ORCID帳號登入 (With ORCID)
  • 方案一:定期更新ORCID者,以ID匯入 (Search for identifier (ORCID))
  • 方案二:自行建檔 (Default mode Submission)
  • 方案三:學科館員協助匯入 (Email worklist to subject librarians)

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science