Skip navigation
  • 中文
  • English

DSpace CRIS

  • DSpace logo
  • Home
  • Organizations
  • Researchers
  • Research Outputs
  • Explore by
    • Organizations
    • Researchers
    • Research Outputs
  • Academic & Publications
  • Sign in
  • 中文
  • English
  1. NTU Scholars
  2. 電機資訊學院
  3. 資訊工程學系
Please use this identifier to cite or link to this item: https://scholars.lib.ntu.edu.tw/handle/123456789/119367
Title: 大規模線性排序支持向量機在分散式環境下之分析實作
Analysis and Implementation of Large-scale Linear RankSVM in Distributed Environments
Authors: 黃煒倫
Huang, Wei-Lun
Keywords: 大規模學習;排序支持向量機;分散式牛頓法;Learning to rank;Ranking support vector machines;Large-scale learning;Linear model;Distributed Newton method
Issue Date: 2016
Abstract: 
在排序學習中,要快速地得到一個基準模型作為比較,線性排序支持向量機是一個有用的方法。雖然它的平行機制已經被探討且實作在圖形處理器上面,但此實作有可能無法處理大規模的數據集。在本論文中,我們提出兩種平行架構,用分散式牛頓法訓練L2損失函數之線性排序支持向量機。我們小心的探討降低溝通成本以及加速運算的技術,並且在稠密和稀疏的數據集上比較兩種平行機制的優劣。實驗顯示本文提出的方法在兩種數據集上會遠比單機運算快,分別為資料量遠大於特徵數以及特徵數遠大於資料量的數據集。

Linear rankSVM is a useful method to quickly produce a baseline model for learning to rank. Although its parallelization has been investigated and implemented on GPU, it may not handle large-scale data sets. In this thesis, we propose a distributed trust region Newton method for training L2-loss linear rankSVM with two kinds of parallelizations. We carefully discuss the techniques for reducing the communication cost and speeding up the computation, and compare both kinds of parallelizations on dense and sparse data sets. Experiments show that our distributed methods are much faster than the single machine method on two kinds of data sets: one with its number of instances much larger than its number of features, and the other is the opposite.
URI: http://ntur.lib.ntu.edu.tw//handle/246246/275536
Rights: 論文公開時間: 2019/3/8
論文使用權限: 同意有償授權(權利金給回饋本人)
Appears in Collections:資訊工程學系

Files in This Item:
File Description SizeFormat
ntu-105-R02922041-1.pdf23.32 kBAdobe PDFView/Open
Show full item record

Page view(s)

12
checked on Apr 6, 2022

Download(s)

3
checked on Apr 6, 2022

Google ScholarTM

Check

Related Items in TAIR


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

臺大位居世界頂尖大學之列,為永久珍藏及向國際展現本校豐碩的研究成果及學術能量,圖書館整合機構典藏(NTUR)與學術庫(AH)不同功能平台,成為臺大學術典藏NTU scholars。期能整合研究能量、促進交流合作、保存學術產出、推廣研究成果。

To permanently archive and promote researcher profiles and scholarly works, Library integrates the services of “NTU Repository” with “Academic Hub” to form NTU Scholars.

總館學科館員 (Main Library)
醫學圖書館學科館員 (Medical Library)
社會科學院辜振甫紀念圖書館學科館員 (Social Sciences Library)

開放取用是從使用者角度提升資訊取用性的社會運動,應用在學術研究上是透過將研究著作公開供使用者自由取閱,以促進學術傳播及因應期刊訂購費用逐年攀升。同時可加速研究發展、提升研究影響力,NTU Scholars即為本校的開放取用典藏(OA Archive)平台。(點選深入了解OA)

  • 請確認所上傳的全文是原創的內容,若該文件包含部分內容的版權非匯入者所有,或由第三方贊助與合作完成,請確認該版權所有者及第三方同意提供此授權。
    Please represent that the submission is your original work, and that you have the right to grant the rights to upload.
  • 若欲上傳已出版的全文電子檔,可使用Sherpa Romeo網站查詢,以確認出版單位之版權政策。
    Please use Sherpa Romeo to find a summary of permissions that are normally given as part of each publisher's copyright transfer agreement.
  • 網站簡介 (Quickstart Guide)
  • 使用手冊 (Instruction Manual)
  • 線上預約服務 (Booking Service)
  • 方案一:臺灣大學計算機中心帳號登入
    (With C&INC Email Account)
  • 方案二:ORCID帳號登入 (With ORCID)
  • 方案一:定期更新ORCID者,以ID匯入 (Search for identifier (ORCID))
  • 方案二:自行建檔 (Default mode Submission)
  • 方案三:學科館員協助匯入 (Email worklist to subject librarians)
Build with DSpace-CRIS - Extension maintained and optimized by Logo 4SCIENCE Feedback