Skip navigation
  • 中文
  • English

DSpace CRIS

  • DSpace logo
  • Home
  • Organizations
  • Researchers
  • Research Outputs
  • Explore by
    • Organizations
    • Researchers
    • Research Outputs
  • Academic & Publications
  • Sign in
  • 中文
  • English
  1. NTU Scholars
  2. 醫學院
  3. 醫學檢驗暨生物技術學系
Please use this identifier to cite or link to this item: https://scholars.lib.ntu.edu.tw/handle/123456789/146370
Title: A Comparison of Micu Survival Prediction Using the Logistic Regression Model and Artificial Neural Network Model
比較邏輯迴歸模式與類神經網路模 式對內科加護病房存活率之預測
Authors: 林淑萍
李奇學
呂陽樞
許玲女
LIN, SHWU-BIN
LEE, CHI-HSUEH
LU, YANG-SHU
HSU, LING-NU
Keywords: 存活率;內科加護病房;類神經網路模式;邏輯迴歸模式;survival rate, medical intensive care unit MICU;Artificial Neural Network Model
Issue Date: 2006
Journal Volume: v.14
Journal Issue: n.4
Start page/Pages: 306-314
Source: THE JOURNAL OF NURSING RESEARCH 
Abstract: 
在醫療費用支出緊縮的政策下,隨著醫療技術的發展與人口老化的雙重壓力下,將可 預見重症醫療照護對有限醫療資源將造成更大的壓力。因此本研究的目的係比較邏輯 迴歸與類神經網路二種模式,對內科加護病房病人存活率之預測能力,提供一更倫理 與客觀的存活率預測系統,以進一步促使內科加護病房資源能更有效率之營運。此二 個模式使用於2002年1月至2004年1月期間住進台灣某醫學中心內科加護病房1,496位 病人的APACHE-II(Acute Physiology and Chronic Health Evaluation-II)及GCS( Glasgow Coma Scale)分數來進行存活率之預測。研究結果顯示類神經網路模式相較 於邏輯迴歸模式在存活者(86. 7%,n=361)與整體病患(74.7%,n=498)之預測能力均較 佳。 Under the policy of restraint in medical expenditure and with the dual pressures of medical technology development and population aging, the critical care services will exert even greater pressure on the limited medical resources. Therefore, the objective of this study is to compare the abilities of two models, the Logistic Regression Model and the Neural Network Model, to predict the survival of critical care patients, in order to provide a more ethical and objective survival prediction system, as well as to promote more effective management of the resources of the medical intensive care unit (MICU). The two models use the Acute Physiology and Chronic Health Evaluation-II (APACHE-II ) and Glasgow Coma Scale (GCS) scores of 1,496 patients stayed who in the MICU of a Taiwan medical center during January 2002-January 2004 to conduct the survival prediction . The study results show that the Neural Network Model has a better predictive ability than the Logistic Regression Model both with regard to the survivors (86.7%, n=361) and with regard to the entire population of patients studied (74 .7%, n=498).
URI: http://ntur.lib.ntu.edu.tw//handle/246246/94563
Appears in Collections:醫學檢驗暨生物技術學系

Show full item record

Page view(s)

12
checked on Oct 26, 2020

Google ScholarTM

Check

Related Items in TAIR


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

臺大位居世界頂尖大學之列,為永久珍藏及向國際展現本校豐碩的研究成果及學術能量,圖書館整合機構典藏(NTUR)與學術庫(AH)不同功能平台,成為臺大學術典藏NTU scholars。期能整合研究能量、促進交流合作、保存學術產出、推廣研究成果。

To permanently archive and promote researcher profiles and scholarly works, Library integrates the services of “NTU Repository” with “Academic Hub” to form NTU Scholars.

總館學科館員 (Main Library)
醫學圖書館學科館員 (Medical Library)
社會科學院辜振甫紀念圖書館學科館員 (Social Sciences Library)

開放取用是從使用者角度提升資訊取用性的社會運動,應用在學術研究上是透過將研究著作公開供使用者自由取閱,以促進學術傳播及因應期刊訂購費用逐年攀升。同時可加速研究發展、提升研究影響力,NTU Scholars即為本校的開放取用典藏(OA Archive)平台。(點選深入了解OA)

  • 請確認所上傳的全文是原創的內容,若該文件包含部分內容的版權非匯入者所有,或由第三方贊助與合作完成,請確認該版權所有者及第三方同意提供此授權。
    Please represent that the submission is your original work, and that you have the right to grant the rights to upload.
  • 若欲上傳已出版的全文電子檔,可使用Sherpa Romeo網站查詢,以確認出版單位之版權政策。
    Please use Sherpa Romeo to find a summary of permissions that are normally given as part of each publisher's copyright transfer agreement.
  • 網站簡介 (Quickstart Guide)
  • 使用手冊 (Instruction Manual)
  • 線上預約服務 (Booking Service)
  • 方案一:臺灣大學計算機中心帳號登入
    (With C&INC Email Account)
  • 方案二:ORCID帳號登入 (With ORCID)
  • 方案一:定期更新ORCID者,以ID匯入 (Search for identifier (ORCID))
  • 方案二:自行建檔 (Default mode Submission)
  • 方案三:學科館員協助匯入 (Email worklist to subject librarians)
Build with DSpace-CRIS - Extension maintained and optimized by Logo 4SCIENCE Feedback