Repository logo
  • English
  • 中文
Log In
Have you forgotten your password?
  1. Home
  2. College of Medicine / 醫學院
  3. Molecular Medicine / 分子醫學研究所
  4. Functional Characterization of RNA binding protein Rbp1p and Golgi associated protein Vps74p in Saccharomyces cerevisiae
 
  • Details

Functional Characterization of RNA binding protein Rbp1p and Golgi associated protein Vps74p in Saccharomyces cerevisiae

Date Issued
2006
Date
2006
Author(s)
Jang, Li-Ting
DOI
en-US
URI
http://ntur.lib.ntu.edu.tw//handle/246246/51366
Abstract
Section I. Functional Characterization of RNA binding protein Rbp1p in Saccharomyces cerevisiae The Saccharomyces cerevisiae RNA-binding protein Rbp1p was initially identified as a negative growth regulator. Overexpression of Rbp1p can decrease the level of mitochondrial Por1p mRNA by enhancing its degradation. Recently, one kind of cytoplasmic foci had been defined, referred to processing bodies (P-bodies), wherein mRNA decay factors are concentrated and where mRNA decay can occur. Here, we show that Rbp1p is found in the mRNA processing bodies. Rbp1p localizes to P-bodies in an xrn1 strain and the N-terminus, C-terminus, and RRM1 domain are involved in this recruitment. We also demonstrate that the N-terminal and RRM1 domains of Rbp1p are necessary but not sufficient for its localization in P bodies. The C-terminus of Rbp1p is involved in oligomers formation. Dhh1p can be localized to P-bodies, and we show that in vivo Rbp1p interacts with Dhh1p. However, this interaction does not affect the recruitment of Rbp1p to P-bodies. Immunostaining also reveal that HA-Rbp1p located to P-bodies in rbp1Δxrn1Δccr4Δ and rbp1Δxrn1Δpan2Δ mutants, suggest that proteins involved in deadenylation are not required for the recruitment of Rbp1p to P-bodies. We also demonstrate that Rbp1p is not required for localizing POR1 mRNA to P bodies in an xrn1Δ strain. We have addressed how the relationship between P-bodies and Rbp1p responds to stress. Our data show that Rbp1p colocalizes with Dhh1p under several stress conditions including glucose deprivation, osmotic stress, and late growth stage. In response to cycloheximide treatment, Dhh1p and Dcp2p are dissociated from P-bodies, but there are no significant differences in Rbp1p localization. Despite the close relationship between Rbp1p and P-bodies, Rbp1p is not essential to P-bodies formation. Based on our data, we propose that Rbp1p is a redundant protein of P-body seed and remains in such foci even when mRNAs are no longer available. In our study, seventeen full-length Rbp1p interacting proteins have identified. Considering that protein-protein interactions play crucial roles in the execution of various biological functions, cumulative connection of these binary interactions would contribute considerably to the functional interpretation of Rbp1p. Section II. Functional Characterization of Golgi associated protein Vps74p in Saccharomyces cerevisiae In Saccharomyces cerevisiae, apical bud growth occurs for a brief period in G1 when the deposition of membrane and cell wall is restricted to the tip of the growing bud. Vps74p (product of YDR372C) was recently reported to alter the elongated bud morphology of cdc34-2 cells arrested in the apical growth phase. Here, we show that Vps74p is phosphorylated on serine-19 in a growth-phase-dependent manner. Cdc28 kinase is required for Vps74p phosphorylation. Both alanine and aspartate substitutions in serine-19 directly affect elongated bud morphology of cdc34-2 cells. The alanine substitution abolished Vps74p functional activity on apical growth. In contrast, the aspartate substitution stimulates cellular elongated buds formation. Localization of Vps74p at the Golgi is not dependent on the N-terminal phosphorylation, but on its C-terminal domain. Vps74p is involved in the transportation of GPI-anchored protein Gas1. In addition, deletion of C-terminus, but not N-terminus, of Vps74p affects cell wall integrity. Together, we infer that the distinct functional outcome from Ser-19 phosphorylation modulates Vps74p activity in apical growth, but not in cell wall integrity.
Subjects
酵母菌核醣核酸結合蛋白
核醣核酸的降解
頂端發芽生長
Saccharomyces cerevisiae RNA-binding protein
P-bodies
mRNA decay
Golgi associated protein
apical growth
Type
other
File(s)
Loading...
Thumbnail Image
Name

ntu-95-F88448002-1.pdf

Size

23.31 KB

Format

Adobe PDF

Checksum

(MD5):f7d96e428a072e1b90a65062a83d68f9

臺大位居世界頂尖大學之列,為永久珍藏及向國際展現本校豐碩的研究成果及學術能量,圖書館整合機構典藏(NTUR)與學術庫(AH)不同功能平台,成為臺大學術典藏NTU scholars。期能整合研究能量、促進交流合作、保存學術產出、推廣研究成果。

To permanently archive and promote researcher profiles and scholarly works, Library integrates the services of “NTU Repository” with “Academic Hub” to form NTU Scholars.

總館學科館員 (Main Library)
醫學圖書館學科館員 (Medical Library)
社會科學院辜振甫紀念圖書館學科館員 (Social Sciences Library)

開放取用是從使用者角度提升資訊取用性的社會運動,應用在學術研究上是透過將研究著作公開供使用者自由取閱,以促進學術傳播及因應期刊訂購費用逐年攀升。同時可加速研究發展、提升研究影響力,NTU Scholars即為本校的開放取用典藏(OA Archive)平台。(點選深入了解OA)

  • 請確認所上傳的全文是原創的內容,若該文件包含部分內容的版權非匯入者所有,或由第三方贊助與合作完成,請確認該版權所有者及第三方同意提供此授權。
    Please represent that the submission is your original work, and that you have the right to grant the rights to upload.
  • 若欲上傳已出版的全文電子檔,可使用Open policy finder網站查詢,以確認出版單位之版權政策。
    Please use Open policy finder to find a summary of permissions that are normally given as part of each publisher's copyright transfer agreement.
  • 網站簡介 (Quickstart Guide)
  • 使用手冊 (Instruction Manual)
  • 線上預約服務 (Booking Service)
  • 方案一:臺灣大學計算機中心帳號登入
    (With C&INC Email Account)
  • 方案二:ORCID帳號登入 (With ORCID)
  • 方案一:定期更新ORCID者,以ID匯入 (Search for identifier (ORCID))
  • 方案二:自行建檔 (Default mode Submission)
  • 方案三:學科館員協助匯入 (Email worklist to subject librarians)

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science