Repository logo
  • English
  • 中文
Log In
Have you forgotten your password?
  1. Home
  2. College of Science / 理學院
  3. Chemistry / 化學系
  4. The Development of On-line Single / Staggered Multi-Step Elution SPE-CE-MS and Heart-cut 2D–CE-MS
 
  • Details

The Development of On-line Single / Staggered Multi-Step Elution SPE-CE-MS and Heart-cut 2D–CE-MS

Date Issued
2010
Date
2010
Author(s)
Lee, Wei-Han
URI
http://ntur.lib.ntu.edu.tw//handle/246246/257370
Abstract
A PDMS based two-leveled two cross design interface was proposed for on-line coupling SPE-CE-MS. In this interface, the SPE column and the CE separation column were positioned orthogonally and two crosses were fabricated on the interface. With the two cross design, the operation of SPE could be performed independently without unexpected flow through leakage into the separation column. The performance of the interface was optimized using a peptide mixture. The position of the SPE column related to the CE separation channel was found to be critical to the performance of the system. Under the optimal position, the separation efficiency was similar to a CE-MS experiment without SPE. The peptide signals were enhanced 50 to 100-fold and the repeatability was within 4% RSD for migration time and 10% RSD for peak area. A tryptic digest of cytochrome C was used to demonstrate the feasibility of the interface in protein identification at a level of 1 ng/mL. In a protein mixture analysis, the identification of proteins usually suffers in low sequence coverage in the single run CZE-ESI-MS/MS. An original concept of on-line coupling multistep elution solid phase extraction (SPE) to CZE-MS/MS was proposed to increase sequence coverage of protein mixture analysis. The multistep elution SPE (the first dimension) provides an additional dimension of separation prior to CZE (the second dimension) and extends the separation capacity for protein mixture analysis. Furthermore, a staggered CZE method was described to increase the throughput of each CZE runs in the second dimension separation and thus to reduce entire analysis time. In this study for protein mixture standards, more than 60% of additional peptides were discovered , and more than 50% was improved in sequence coverage by using multistep elution SPE-CE-MS/MS. By using staggered CZE method, half of the entire analysis time could be saved (54%) in comparison with the sequential CZE method used in multistep elution SPE-CE-MS/MS and thus avoiding the time-consuming analytical procedure in comprehensive 2D separation. An interface for heart-cut 2D CE-MS was proposed to increase separation selectivity in mixture analysis. Several concepts were adapted to overcome the limitations of heart-cut 2D-CE designed in the present studies. First, the manipulation of chip-based interface provides an isolated buffer system to connect two sets of capillary electrophoresis. Second, the parallel separation of the two dimensional capillary electrophoresis was detected simultaneously by a pulsed electrospray-based duel-channel CE-MS system. In this study, the system was demonstrated by using capillary zone electrophoresis- micellar electrokinetic chromatography (CZE-MEKC) system to analyze sulfonamide mixtures. Under the consideration of correspondence in EOF for fused silica capillary the PDMS based chip channel, 8 sulfonamide standards can be transferred successfully without loss and peak broadening during the heart-cutting operation. The preliminary feasibility of heart-cut CZE-MEKC with dual-channel CE-MS was studied in sulfonamides analysis. Four sulfonamides(SDZ、SMR、STZ、SMM) were transferred into the MEKC channel by the heart-cut interface after separation in the first dimension of CZE. The migration order of four heart-cut sulfonamides was found similar order in the single-run MEKC.
Subjects
CE-MS
on-line preconcentration
solid phase extraction
sequence coverage
2D-CE
heart-cut 2D-CE
dual-channel CE-MS
Type
thesis
File(s)
Loading...
Thumbnail Image
Name

ntu-99-F93223058-1.pdf

Size

23.32 KB

Format

Adobe PDF

Checksum

(MD5):123d432f03d4332f372531233aa7e641

臺大位居世界頂尖大學之列,為永久珍藏及向國際展現本校豐碩的研究成果及學術能量,圖書館整合機構典藏(NTUR)與學術庫(AH)不同功能平台,成為臺大學術典藏NTU scholars。期能整合研究能量、促進交流合作、保存學術產出、推廣研究成果。

To permanently archive and promote researcher profiles and scholarly works, Library integrates the services of “NTU Repository” with “Academic Hub” to form NTU Scholars.

總館學科館員 (Main Library)
醫學圖書館學科館員 (Medical Library)
社會科學院辜振甫紀念圖書館學科館員 (Social Sciences Library)

開放取用是從使用者角度提升資訊取用性的社會運動,應用在學術研究上是透過將研究著作公開供使用者自由取閱,以促進學術傳播及因應期刊訂購費用逐年攀升。同時可加速研究發展、提升研究影響力,NTU Scholars即為本校的開放取用典藏(OA Archive)平台。(點選深入了解OA)

  • 請確認所上傳的全文是原創的內容,若該文件包含部分內容的版權非匯入者所有,或由第三方贊助與合作完成,請確認該版權所有者及第三方同意提供此授權。
    Please represent that the submission is your original work, and that you have the right to grant the rights to upload.
  • 若欲上傳已出版的全文電子檔,可使用Open policy finder網站查詢,以確認出版單位之版權政策。
    Please use Open policy finder to find a summary of permissions that are normally given as part of each publisher's copyright transfer agreement.
  • 網站簡介 (Quickstart Guide)
  • 使用手冊 (Instruction Manual)
  • 線上預約服務 (Booking Service)
  • 方案一:臺灣大學計算機中心帳號登入
    (With C&INC Email Account)
  • 方案二:ORCID帳號登入 (With ORCID)
  • 方案一:定期更新ORCID者,以ID匯入 (Search for identifier (ORCID))
  • 方案二:自行建檔 (Default mode Submission)
  • 方案三:學科館員協助匯入 (Email worklist to subject librarians)

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science