Repository logo
  • English
  • 中文
Log In
Have you forgotten your password?
  1. Home
  2. College of Medicine / 醫學院
  3. School of Medicine / 醫學系
  4. Effects of Inspiratory Flow Waveforms on Lung Mechanics, Gas Exchange and Respiratory Metabolism in Copd Patients during Mechanical Ventilation
 
  • Details

Effects of Inspiratory Flow Waveforms on Lung Mechanics, Gas Exchange and Respiratory Metabolism in Copd Patients during Mechanical Ventilation

Resource
CHEST v.122 n.6 pp.2096-2104
Journal
CHEST
Journal Volume
v.122
Journal Issue
n.6
Pages
2096-2104
Date Issued
2002
Date
2002
Author(s)
YANG, SHIEH-CHING
YANG, SZE-PIAO
URI
http://ntur.lib.ntu.edu.tw//handle/246246/103356
Abstract
Study obsjective: The clinical usefulness of varying inspiratory flow waveforms during mechanical ventilation has not been adequately studied. The aim of this study was to compare the effects of three different respiratory waveforms on the pulmonary mechanics, gas exchange, and respiratory metabolism of ventilated patients with COPD. Design: A randomized and comparative trial of consecutive patients. Setting: Medical ICUs of a 2,000-bed university hospital. Patients: Fifty-four patients with COPD were enrolled. Interventions: Constant, decelerating, and sine waveforms were applied to each patient in a random order. Measurements and results: With tidal volume, inspir- atory time, and inspiratory frequency being kept constant, the decelerating waveform produced statistically significant reductions of peak inspiratory pressure, mean airway resistance, physiologic dead space ventilation (VD/VT), PaCo 2, and symptom score. There was also a significant increase in alveolar-arterial oxygen pressure difference with the decelerating flow waveform, but there were no significant changes in mean airway pressure, arterial oxygenation, heart rate, mean BP, and other hemodynamic measurements. In addition, assessment on the work of breathing (WOB) revealed that ventilator WOB values were reduced with the decelerting waveform. Oxygen consumption and carbon dioxide output were virtually not affected by changing inspiratory flow waveforms. Except for VD/VT, the effects of constant square and sine waveforms were similar to each other and could not be separated statistically. Conclusions: The most favorable flow pattern for ventilated patients with COPD appeared to be the decelerating waveform. There are possibilities for the improvement of ventilation in these patients by selecting an appropriate inspiratory flow.
Subjects
COPD
gas exchange
inspiratory flow waveforms
mechanical ventilation
oxygen consumption
pulmonary mechanics

臺大位居世界頂尖大學之列,為永久珍藏及向國際展現本校豐碩的研究成果及學術能量,圖書館整合機構典藏(NTUR)與學術庫(AH)不同功能平台,成為臺大學術典藏NTU scholars。期能整合研究能量、促進交流合作、保存學術產出、推廣研究成果。

To permanently archive and promote researcher profiles and scholarly works, Library integrates the services of “NTU Repository” with “Academic Hub” to form NTU Scholars.

總館學科館員 (Main Library)
醫學圖書館學科館員 (Medical Library)
社會科學院辜振甫紀念圖書館學科館員 (Social Sciences Library)

開放取用是從使用者角度提升資訊取用性的社會運動,應用在學術研究上是透過將研究著作公開供使用者自由取閱,以促進學術傳播及因應期刊訂購費用逐年攀升。同時可加速研究發展、提升研究影響力,NTU Scholars即為本校的開放取用典藏(OA Archive)平台。(點選深入了解OA)

  • 請確認所上傳的全文是原創的內容,若該文件包含部分內容的版權非匯入者所有,或由第三方贊助與合作完成,請確認該版權所有者及第三方同意提供此授權。
    Please represent that the submission is your original work, and that you have the right to grant the rights to upload.
  • 若欲上傳已出版的全文電子檔,可使用Open policy finder網站查詢,以確認出版單位之版權政策。
    Please use Open policy finder to find a summary of permissions that are normally given as part of each publisher's copyright transfer agreement.
  • 網站簡介 (Quickstart Guide)
  • 使用手冊 (Instruction Manual)
  • 線上預約服務 (Booking Service)
  • 方案一:臺灣大學計算機中心帳號登入
    (With C&INC Email Account)
  • 方案二:ORCID帳號登入 (With ORCID)
  • 方案一:定期更新ORCID者,以ID匯入 (Search for identifier (ORCID))
  • 方案二:自行建檔 (Default mode Submission)
  • 方案三:學科館員協助匯入 (Email worklist to subject librarians)

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science