Repository logo
  • English
  • 中文
Log In
Have you forgotten your password?
  1. Home
  2. College of Science / 理學院
  3. Mathematics / 數學系
  4. Study into Fully Orientable Graphs
 
  • Details

Study into Fully Orientable Graphs

Date Issued
2007
Date
2007
Author(s)
Lai, Hsin-Hao
DOI
en-US
URI
http://ntur.lib.ntu.edu.tw//handle/246246/59413
Abstract
Assume that $D$ is an acyclic orientation of a graph $G$. An arc is dependent if its reversal creates a directed cycle. Let $d(D)$ be the number of dependent arcs in $D$. Let $d_{min}(G)$ ($d_{max}(G)$) be the minimum (maximum) number of dependent arcs in all acyclic orientations of $G$. A graph $G$ is said to be fully orientable if, for each integer $d$ satisfying $d_{min}(G) leq d leq d_{max}(G)$, there is an acyclic orientation $D$ of $G$ with $d(D)=d$. We begin this thesis by introducing basic definitions, notation, and known results about fully orientability of graphs. In order to characterize $d_{min}(G)$, we then introduce several parameters about triangles and covering graphs. A graph is called a covering graph if it is the underlying graph of the Hasse diagram of a partially ordered set. We generalize results in Collins and Tysdal [4] about $d_{min}(M_m(G))$ of generalized Mycielski graphs $M_m(G)$. A method to construct generalized Mycielski graphs $M_m(G)$ with $d_{min}(M_m(G))=1$ is also given. We discuss the following graph operations that preserve fully orientability: the union of two graphs whose intersection is an edge, addition of a path of length at least 2 and addition of an edge between two vertices of degree 2 with a unique common neighbor. We introduce a graph operation called adding a skirt in the following manner. We add a new cycle to a given graph. For each vertex in the cycle, add at most one edge incident to a vertex in the given graph. Except one case, we can prove that the new graph operation preserving fully orientability. We generalize the color-first tree algorithm in Fisher, Fraughnaugh, Langley and West [5] to obtain the following stronger result. For each spanning tree $T$ obtained by depth-first search, there exists an integer $k_T$ such that, for each $d$ satisfying $k_T leq d leq d_{max}(G)$, there is an acyclic orientation $D$ of $G$ with $d(D)=d$. A graph is called 2-degenerate if every subgraph has a vertex of degree at most two. A Halin graph is a plane graph obtained by drawing a tree without vertex of degree 2 in the plane, then drawing a cycle through all leaves in the plane. We prove that $2$-degenerate graphs, Halin graphs, graphs with maximum degree at most 3 and graphs with $d_{min}(G) leq 1$ are fully orientable. Furthermore, we characterize $d_{min}(G)$ of these graphs. In the final chapter, we give brief conclusions and pose some open problems for further study.
Subjects
2-退化圖
無圈定向
相依邊
可全定向圖
Halin圖
2-degenerate graphs
acyclic orientations
dependent arcs
fully orientable graphs
Halin graphs
Type
thesis
File(s)
Loading...
Thumbnail Image
Name

ntu-96-F89221010-1.pdf

Size

23.53 KB

Format

Adobe PDF

Checksum

(MD5):0d51ae9545945619ae2ce2ac90d6d954

臺大位居世界頂尖大學之列,為永久珍藏及向國際展現本校豐碩的研究成果及學術能量,圖書館整合機構典藏(NTUR)與學術庫(AH)不同功能平台,成為臺大學術典藏NTU scholars。期能整合研究能量、促進交流合作、保存學術產出、推廣研究成果。

To permanently archive and promote researcher profiles and scholarly works, Library integrates the services of “NTU Repository” with “Academic Hub” to form NTU Scholars.

總館學科館員 (Main Library)
醫學圖書館學科館員 (Medical Library)
社會科學院辜振甫紀念圖書館學科館員 (Social Sciences Library)

開放取用是從使用者角度提升資訊取用性的社會運動,應用在學術研究上是透過將研究著作公開供使用者自由取閱,以促進學術傳播及因應期刊訂購費用逐年攀升。同時可加速研究發展、提升研究影響力,NTU Scholars即為本校的開放取用典藏(OA Archive)平台。(點選深入了解OA)

  • 請確認所上傳的全文是原創的內容,若該文件包含部分內容的版權非匯入者所有,或由第三方贊助與合作完成,請確認該版權所有者及第三方同意提供此授權。
    Please represent that the submission is your original work, and that you have the right to grant the rights to upload.
  • 若欲上傳已出版的全文電子檔,可使用Open policy finder網站查詢,以確認出版單位之版權政策。
    Please use Open policy finder to find a summary of permissions that are normally given as part of each publisher's copyright transfer agreement.
  • 網站簡介 (Quickstart Guide)
  • 使用手冊 (Instruction Manual)
  • 線上預約服務 (Booking Service)
  • 方案一:臺灣大學計算機中心帳號登入
    (With C&INC Email Account)
  • 方案二:ORCID帳號登入 (With ORCID)
  • 方案一:定期更新ORCID者,以ID匯入 (Search for identifier (ORCID))
  • 方案二:自行建檔 (Default mode Submission)
  • 方案三:學科館員協助匯入 (Email worklist to subject librarians)

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science